The XTA-50 is electronically controlled and both center wavelength and bandwidth can be set precisely and independently. Versions are available covering all the key telecom wavelengths from 1260 nm to 1650 nm and bandwidths from 32 pm (4 GHz) to 5 nm.

KEY FEATURES

- Adjustable bandwidth flat-top filter
- Ultra-sharp filter edges
- High isolation
- 200 nm wavelength range
- High accuracy and repeatability
- Narrowest filter—Highest selectivity
KEY FEATURES

Adjustable Bandwidth Flat-top Filter
The bandwidth of the XTA-50 filters can be adjusted independently of the center wavelength. The filter has a flat-top profile with minimal ripple, less than 0.2 dB. Models are available with FWHM bandwidths from 32 pm (4 GHz) up to 5 nm (625 GHz).

Ultra-sharp Filter Edges
The XTA-50 uses EXFO patented quadrupal pass technology. This creates extremely sharp filter edges with slopes of up to 800 dB/nm. Single or groups of narrowly spaced DWDM channels or coherent super-channels can be selected with ease.

High Isolation
In addition to the sharp filter edges, the quadrupal pass technology achieves higher isolation than conventional double-pass filters. Isolation is typically 60 dB.

200 nm Wavelength Range
All models have a very wide wavelength range and cover the key telecom wavelengths from 1260 nm to 1650 nm. The O-band model has 100 nm range. The SCL band model cover up to a useful 200 nm range.

High Accuracy and Repeatability
High resolution translation stages are used for both wavelength and bandwidth control. This ensures the XTA-50 can be set accuracy and repeatedly over time.

Narrowest Filter—Highest Selectivity
The XTA-50 is the most selective filter on the market. Models are available with filter bandwidths from 32 pm (4 GHz) up to 5 nm (625 GHz).

APPLICATION

DWDM Channel Selection
Low dispersion, steep edges and high isolation mean that DWDM channels, or even coherent superchannels with spacing down to 10 GHz, can be separated with ease. BER tests have never been so good!

Variable OSNR Source
A variable OSNR source typically consists of an ASE source combined with a variable attenuator. Adding the XTA-50 with a flat-top adjustable bandwidth enables consistent noise loading for all DWDM wavelengths.

R&D of Modulation Formats
The XTA-50 is perfect for the filtering and analysis of sub-bands of complex modulations formats.

Pulse Shaping
Wide bandwidth flexibility enables the filter to be used for pulse shaping of femtosecond lasers.
XTA-50 Specifications

<table>
<thead>
<tr>
<th>Optical characteristics</th>
<th>XTA-50 Standard</th>
<th>XTA-50 Ultrafine</th>
<th>XTA-50 O-band</th>
<th>XTA-50 Wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength range (nm)</td>
<td>1450-1650</td>
<td>1480-1620</td>
<td>1260-1360</td>
<td>1525-1610</td>
</tr>
<tr>
<td>Wavelength resolution (pm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wavelength accuracy (pm) b</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
</tr>
<tr>
<td>Wavelength tuning speed (s)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Minimum bandwidth (FWHM)</td>
<td>50 pm (6.25 GHz)</td>
<td>32 pm (4 GHz)</td>
<td>50 pm (8 GHz)</td>
<td>50 pm (6.25 GHz)</td>
</tr>
<tr>
<td>Maximum bandwidth (FWHM)</td>
<td>950 pm (120 GHz)</td>
<td>650 pm (80 GHz)</td>
<td>900 pm (160 GHz)</td>
<td>5000 pm (625 GHz)</td>
</tr>
<tr>
<td>Bandwidth resolution (pm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bandwidth tuning speed (s)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filter edge roll-off (dB/nm)</td>
<td>500 (typical)</td>
<td>800 (typical)</td>
<td>500 (typical)</td>
<td>500 (typical)</td>
</tr>
<tr>
<td>Insertion loss (dB)</td>
<td>5 (4.5 dB typical) a,f</td>
<td>5 (4.0 dB typical) f,g</td>
<td>5 (4.5 dB typical) f,h</td>
<td>5 (4.5 dB typical) f,i</td>
</tr>
<tr>
<td>Flatness (dB)</td>
<td>0.2 h</td>
<td>0.2 f</td>
<td>0.3 h,m</td>
<td>0.2 n</td>
</tr>
<tr>
<td>Polarization dependent loss (dB)</td>
<td>±0.2 f,i</td>
<td>±0.2 f</td>
<td>±0.2 h</td>
<td>±0.2 l</td>
</tr>
<tr>
<td>Out-of-band suppression (crosstalk) (dB)</td>
<td>40 (60 dB typical) a</td>
<td>40 (50 dB typical) a</td>
<td>40 (60 dB typical) a</td>
<td>40 (45 dB typical) a</td>
</tr>
</tbody>
</table>

Displays and Other Interfaces
- **Display**: 7 inch resistive touch-screen (resolution 800 x 480)
- **Communication interfaces**: USB-B, Ethernet (x2), RS-232C, GPIB p
- **Display and other interfaces**: DVI-I (x1), USB 2.0-A (x4), PS/2 (x2)
- **Optical fiber type**: SMF or PMF
- **Connector type**: FC/PC or FC/APC

Operating Conditions
- **Temperature range**: 15 °C to 35 °C (59 °F to 95 °F)
- **Maximum optical input power (dBm)**: 30 | 27

Size
- **Dimensions (W x D x H)**: 254 x 385 x 154 mm (10 in x 15 ⅛ in x 6 in)
- **Weight**: 7 kg (15.4 lb)

Notes
- a. Specifications apply for wavelengths not equal to any water absorption line.
- b. With “Backlash suppression” setting enabled.
- c. Between ~3 and ~40 dB for FWHM <800 pm.
- d. Between ~3 and ~40 dB, typically 550 dB/nm at FWHM = 50 pm, 450 dB/nm at FWHM = 1 nm, 225 dB/nm at FWHM = 5 nm.
- e. From 1500 nm to 1600 nm and FWHM >100 pm.
- f. At lowest FWHM the insertion loss is 7 dB typical.
- g. From 1500 nm to 1600 nm and FWHM >60 pm.
- h. From 1280 nm to 1340 nm and FWHM >100 pm.
- i. For FWHM >100 pm.
- j. At lowest FWHM the insertion loss is < 7.0 dB.
- k. Centered width of FWHM-150 pm. For 150 pm < FWHM < 650 pm.
- l. Centered width of FWHM-100 pm. For 100 pm < FWHM < 500 pm.
- m. From 1280 nm to 1340 nm.
- n. Centered width of FWHM-150 pm. For 150 pm < FWHM < 2000 pm.
- o. Measured 1 nm away from the ~3 dB points.
- p. GPIB is supported as an option through an external RS-232/GPIB converter.

All specifications are given at 21°C± 3°C after 30 minutes warm-up.
ADVANCED FEATURES AND PERFORMANCE

Easy access to optical connectors for cleaning. Easing maintenance and enabling the lowest losses to be maintained.

![Graph showing FWHM and Insertion loss (dB) over a range of wavelengths](image)

Figure 3. Expanded view of filter profile (wide)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Model</th>
<th>Connector</th>
<th>Output fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL-S = 1450 - 1650 nm, bandwidth 50 - 950 pm</td>
<td>58 = FC/APC</td>
<td>00 = SMF28 singlemode fiber</td>
</tr>
<tr>
<td>SCL-U = 1480 - 1620 nm, bandwidth 32 - 850 pm</td>
<td>50 = FC/PC</td>
<td>M = Polarization maintaining fiber</td>
</tr>
<tr>
<td>CL-W = 1525 - 1610 nm, bandwidth 50 - 5000 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-S = 1260 - 1380 nm, bandwidth 50 - 900 pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: XTA-50-SCL-S-M-50

Note

a. Not available for CL-W model.

EXFO serves over 2000 customers in more than 100 countries. To find your local office contact details, please go to www.EXFO.com/contact.

EXFO is certified ISO 9001 and attests to the quality of these products. EXFO has made every effort to ensure that the information contained in this specification sheet is accurate. However, we accept no responsibility for any errors or omissions, and we reserve the right to modify design, characteristics and products at any time without obligation. Units of measurement in this document conform to SI standards and practices. In addition, all of EXFO’s manufactured products are compliant with the European Union’s WEEE directive. For more information, please visit www.EXFO.com/recycle. Contact EXFO for prices and availability or to obtain the phone number of your local EXFO distributor.

For the most recent version of this spec sheet, please go to www.EXFO.com/specs. In case of discrepancy, the web version takes precedence over any printed literature.