Contents

Regulatory Information .. vii

1 Introducing the intelligent Optical Link Mapper ... 1
 Principles of Operation ... 6
 Testing Modes ... 7
 Exporting Data to Other Formats .. 7
 Performing Multimode Measurements ... 8
 Launch, Receive, and Loop Fibers ... 9
 Software Options .. 13
 Technical Specifications ... 13
 Conventions ... 14

2 Safety Information ... 15
 General Safety Information ... 15
 Laser Safety Information for FTB-7000/FTB-700Gv2/FTBx/FTB/FTBx/MAX-700C Series
 (Units without VFL) .. 17
 Laser Safety Information for FTBx-740C DWOCC and MAX-740C DWOCC Modules
 (Units without VFL) .. 19
 Laser Safety Information for FTB-7000 Series (Units with VFL) 20
 Laser Safety Information for MAX-700C Series (Units with VFL) 21
 Laser Safety Information for FTBx-740C DWOCC and MAX-740C DWOCC Modules
 (Units with VFL) .. 22
 Laser Safety Information for MAX-700B Series ... 23
 Electrical Safety Information ... 24

3 Getting Started With Your iOLM .. 25
 Main Window .. 25
 Status Bar .. 26
 Connecting an Optical Switch to the iOLM ... 27

4 Preparing Your iOLM for a Test .. 29
 Cleaning and Connecting Optical Fibers ... 29
 Installing the EXFO Universal Interface (EUI) .. 31
 Naming Trace Files Automatically ... 32
 Reverting to Factory Settings .. 37
 Configuring Your iOLM ... 38
 Enabling or Disabling the Cumulative Loss .. 54
 Enabling or Disabling the Automated Acquisition Sequence 55
9 Customizing Your iOLM ... 131
 Setting the Default Storage Folder .. 131
 Saving Files in Bellcore Format ... 132
 Customizing Reports ... 134
 Activating the Automated Report Creation 135
 Enabling or Disabling Sound Notifications 137
 Displaying or Hiding Fiber Sections .. 138
 Selecting the Distance Units ... 139
 Enabling or Disabling the Automatic Storage of the Files 140

10 Understanding Diagnostics ... 143

11 Using the Inline Power Meter (Optional on Some Models) 145
 Understanding the Inline Power Meter .. 145
 Setting Custom Power Meter Thresholds .. 147
 Selecting the Measurement Mode .. 149
 Measuring Power Levels .. 151
 Performing an iOLM Acquisition with a Power Meter 153

12 Using Your Module as a Source ... 155

13 Analyzing and Managing Results ... 159
 Viewing Results in the Link View .. 159
 Viewing Results of Elements and Fiber Section Details 176
 Editing Element Types ... 178
 Managing Elements and Analyzing Links 180
 Viewing .SOR Traces in the OTDR Viewer 187
 Viewing Measurement Information .. 188
 Viewing Multifiber Results .. 189

14 Managing Files ... 191
 Opening Files .. 191
 Saving Files .. 192
 Exporting Files to the Bellcore Format .. 194
 Generating a Report .. 195

15 Maintenance ... 197
 Cleaning EUI Connectors ... 198
 Recalibrating the Unit .. 200
 Recycling and Disposal .. 201
Contents

16 Troubleshooting ... 203
 Viewing Online Documentation .. 203
 Contacting the Technical Support Group ... 203
 Viewing Information About Your iOLM ... 204
 Transportation .. 204

17 Warranty ... 205
 General Information ... 205
 Liability .. 206
 Exclusions .. 206
 Certification .. 206
 Service and Repairs ... 207
 EXFO Service Centers Worldwide ... 208

Index ... 209
Regulatory Information

Electromagnetic Interference and Compatibility Regulatory Information

For Electromagnetic Interference and Compatibility Regulatory information on your product, refer to the user documentation of your platform.

European Declaration of Conformity

The full text of the EU declaration of conformity is available at the following Internet address: www.exfo.com/en/resources/legal-documentation.
Introducing the intelligent Optical Link Mapper

The intelligent Optical Link Mapper (iOLM) is an optimized application for access/FTTx network characterization. This OTDR-based application uses multipulse acquisitions and advanced algorithms to deliver detailed information on every element on the link.

Depending on the type of acquisition you want to perform and the environment you are working in, different modules are available for your tests:

- The standard iOLM uses advanced algorithms that dynamically define the testing parameters, as well as the number of acquisitions that best fit the network under test. As soon as the trace is analyzed, all results are combined into a single link view. Specific diagnostics are also provided to help you with the troubleshooting process.

- The MAX/FTBx-740C-DWx module allows you to perform specific acquisitions using the DWDM (dense wavelength-division multiplexing) technology in the C-band and is designed to test through field mux/demux channels. This high-resolution particular type of module provides complete end-to-end link characterization and helps troubleshooting metro Ethernet links as well as commercial services. See Working With the DWDM Module on page 59 for details.

- The MAX/FTBx-740C-CW module covers up to 18 CWDM ITU channels, from 1270 nm to 1610 nm (with a channel spacing of 20 nm), and is designed to test through field mux/demux channels. This high-resolution particular type of CWDM (coarse wavelength-division multiplexing) module provides complete end-to-end link characterization and helps troubleshooting commercial, C-RAN networks as well as metro Ethernet links deployments. See Working With the CWDM Module on page 69 for details.
Introducing the intelligent Optical Link Mapper

The iOLM module can be equipped optionally with an inline power meter. The power meter is called inline because the acquisition is done using the SM live port used for iOLM measurements. Optionally, you can measure the power levels for two wavelengths in a single acquisition if two wavelengths are used for testing. See Using the Inline Power Meter (Optional on Some Models) on page 145 for details.

Note: Depending on the model and options you have purchased, some features may not be available.

Note: In this documentation, the words “tap” and “double-tap” (related to the use of a touchscreen) replace the words “click” and “double-click”.

FTB-7000 Series for FTB-2/FTB-2 Pro and FTB-4 Pro
Introducing the intelligent Optical Link Mapper

MAX-700B Series

OTDR port (singlemode)

OTDR port (singlemode live)

Active LED
(on when laser is emitting)

FTB-700C Series, MAX-700C Series, FTB-700Gv2 Series, and FTBx-700C Series

OTDR port (singlemode)

Active LED

OTDR port (multimode)

OTDR port (singlemode live/OPM)
Introducing the intelligent Optical Link Mapper

FTBx-740C

- OTDR port (singlemode)
- Active LED

MAX/FTBx-740C DWOCC

- Active LED
- Input port
Introducing the intelligent Optical Link Mapper

FTBx-730C-SM7-TAM

- OTDR port (singlemode live)
- Active LED
- OTDR port (optical radio-frequency)
Principles of Operation

The iOLM application uses the hardware of an EXFO OTDR to perform acquisitions and characterize the various elements detected on the probed link. However, while a regular OTDR takes one averaged trace at a time with one given set of test parameters, the iOLM takes a series of measurements and integrates them into a simple and intuitive link view.

The test parameters for each sub-measurement are determined by smart algorithms during the measurement. Just as each link is different, each iOLM measurement is different, with its own set of test parameters according to the link length, loss, and ORL. Test time varies depending on the link tested, but is mostly influenced by total link loss. The application uses information from all sub-measurements to enhance the characterization of each element found on the link, yielding accurate and complete results. Depending on the module configuration, you can perform a single or multiple-wavelength acquisition. In the latter case, results will be provided for each wavelength, and a global pass/fail status for each element is displayed.

The application summarizes the results in a linear representation of the link, displaying each element with its associated position, loss and reflectance, as well as the element type.
Testing Modes

There are basically two ways to use the iOLM:

- **Standard**: The acquisitions and analysis processes are designed for general fiber testing such as short links, long haul or PON networks.

- **Optimode**: Depending on the module you are using, different Optimode test configurations are available. The IADV software option gives you access to different Optimodes.

 Optimode is a test configuration using an algorithm intended for specific use cases, which overpass the iOLM standard mode performances in given testing topologies. It is designed to meet performance and certification requirements of specific applications. Trace acquisitions and analyses are optimized for speed, accuracy, detection sensitivity with specific test parameters such as link length, link loss, splitters, and so on. Refer to the iOLM technical specifications for the Optimodes available and their corresponding specifications. You can also contact EXFO to ensure the Optimode is designed for your use cases. See *Selecting a Test Configuration* on page 83 for details.

Exporting Data to Other Formats

The iOLM application can generate reports in PDF format and allow batch post-processing of the measurements. The test configuration files can be created from EXFO’s FastReporter and imported into each test unit.
Performing Multimode Measurements

If your module supports multimode measurements, it can test both 62.5 μm and 50 μm fibers. The internal multimode fiber for an EXFO OTDR is 62.5 μm.

- When a 62.5 μm fiber is connected, the loss at the connector can be correctly characterized just as it is the case for a singlemode fiber. It is then simple to evaluate a pass/fail criterion in this case.

- When a 50 μm fiber is connected, the loss at the connector depends on many factors:
 - the connector loss itself
 - the 62.5 μm to 50 μm core fiber difference
 - the RBS difference between 50 μm and 62.5 μm fibers

The measured loss between the OTDR connector and the fiber is typically around 3.3 dB.

With 50 μm fibers, since the connector loss measurement at the OTDR is imprecise because of major other factors, the iOLM excludes the first connector from the link to avoid providing inaccurate information.

When characterizing a multimode link or a singlemode fiber, launch fibers are recommended. In multimode, the launch and receive fibers must have the same core size as the link under test. Using an unfitting launch or receive fiber would lead to inaccurate results.

The use of an external EF-compliant device such as the SPSB-EF-C30 will ensure a fast and easy way to get accurate loss measurements. For more information about encircled flux compliance, refer to the encircled flux test solution specification sheet.
Launch, Receive, and Loop Fibers

In addition to the fiber under test, there is a launch and receive fiber. Sometimes, a loop fiber can be used to test two fibers at a time.

You can have the iOLM application measure the launch and receive cable lengths automatically or you can enter the values manually. Regardless of the method you use, you have to set the length of the loop fiber manually. See Configuring Your iOLM on page 38 for details.

After the values are set, the application will perform a calibration during which it does a fast measurement and evaluates the length of the fiber. For this reason, you must connect only the cable under test to the module at this point.

If link elements are found on the fiber under calibration or if the OTDR connector is defective, the calibration will fail and a warning is displayed to explain the reason for the failure. A short patchcord (<5 m) is accepted between the instrument and the fiber under calibration and will be included in the calibrated length.

When performing a measurement, the iOLM will try to match the defined launch and receive fibers with elements found on the link to set the A and B connector positions. If no events are found at specified distances because of a “perfect” connection between the link and launch or receive fibers, the iOLM will insert an element at a specified position (with zero loss and ORL).
Launch Fibers

Unlike a traditional OTDR, the iOLM requires only a short launch fiber (>50 m) to benefit from all the advantages of this referencing method, regardless of the link length and loss. A launch fiber longer than 200 m is not recommended when testing PON links. Because the output port of an OTDR may degrade its loss and ORL performances after multiple connections, the use of a launch cable is always recommended.

The first element of the tested link is tagged with the letter (A) into the link view. A launch cable allows you to properly characterize the first connector of the fiber link under test (A) and exclude the OTDR connector's wear from the link evaluation. A reasonable amount of degradation of the OTDR connector is acceptable when using an APC interface; the ORL remains low due to the angle polish, preventing poor near-end resolution. By using a launch fiber, the OTDR connector loss is excluded from the measurement. The iOLM evaluates the OTDR connector loss each time a measurement is performed to inform you about the condition of the connector. It is important to understand that excessive loss at this connector will eventually degrade the measurement capabilities of the instrument. In addition, using a launch cable will help protect your OTDR connector by limiting the number of connections performed directly on that connector. It is easier to repair or replace a launch cable than to replace the OTDR connector.
Receive Fibers

The last element of the tested link is tagged with the letter (B) into the link view. A receive fiber cable can be used at the end of the link opposite the test module in order to characterize the last connector of the link (B) and increase the precision of the total insertion loss result by comparing differential level of two known fibers (to avoid errors due to different backscatter coefficients of the fiber used in the link). If no receive cable is used, the iOLM application will be able to measure the position and ORL of this connector in unmatched condition, but not its loss. No pass/fail status will be displayed for that connector. The required length of the receive fiber will depend on the loss of the link under test. A higher loss requires a longer pulse to reach the receive fiber level. Unlike the launch fiber, the receive fiber has the same limitations than that of a traditional OTDR. Testing a 1 km fiber span with less than 2 dB of loss will require only 100 m of receive fiber. Testing a 23 dB PON link will require a receive fiber of 500 m to 2 km, depending on the fiber length after each splitter.

Note: *Splitters are not supported if you are working with a MAX/FTBx-740C module.*
Loop Fibers

The loopback measurement modes are designed to test duplex cables and save test time by measuring two fibers at a time.

In the loopback measurement modes, one end of the first fiber is connected to the iOLM through a launch fiber, while the other end is connected to the second fiber using a fiber called a loop. Usually, a receive fiber is used on the proximal end of the second fiber. The loop fiber can be viewed as a receive fiber for the first fiber (the one the iOLM is connected to) and a launch fiber for the second fiber.

The automatic split of the initial measurement can only be performed if the length of the launch, loop and receive fibers are properly specified in the application. See Configuring Your iOLM on page 38 for details.
Software Options

Software options are offered with your unit.

- **IOLM**: gives you access to the iOLM application.
- **QUAD**: activates singlemode wavelengths on units.
- **IADV**: offers many features designed for advanced users.
- **ILOOP**: allows you to perform unidirectional and bidirectional iOLM loopback measurements, which consist in looping two fibers together at one end to test both of them at once. Unidirectional loopback measurements test both fibers at once and evaluate them separately, whereas bidirectional loopback measurements pair two measurements automatically (A -> B, B -> A) and then generates the bidirectional measurement for the two fibers.
- **IPRO**: includes the IADV option. It offers all of the iOLM features.
- **ICERT**: gives you access to a list of certification standards you can apply to different test configurations; these will give you a pass/fail status based on industry standards. Since the thresholds cannot be edited, you are ensured of reliable pass/fail results each time.
- The CWDM-10W option enables 10 wavelengths in the 1430 nm - 1610 nm range.
- The CWDM-18W option enables the 18 wavelengths available.
- The CWDM-8W option enables 8 wavelengths in the 1470 nm - 1610 nm range.
- The M-1310W option enables the 1310 nm wavelength.

Technical Specifications

To obtain this product’s technical specifications, visit the EXFO Web site at www.exfo.com.
Conventions

Before using the product described in this guide, you should understand the following conventions:

WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in *death or serious injury*. Do not proceed unless you understand and meet the required conditions.

CAUTION
Indicates a potentially hazardous situation which, if not avoided, may result in *minor or moderate injury*. Do not proceed unless you understand and meet the required conditions.

CAUTION
Indicates a potentially hazardous situation which, if not avoided, may result in *component damage*. Do not proceed unless you understand and meet the required conditions.

IMPORTANT
Refers to information about this product you should not overlook.
2 Safety Information

General Safety Information

WARNING
Do not install or terminate fibers while a light source is active. Never look directly into a live fiber and ensure that your eyes are protected at all times.

WARNING
The use of controls, adjustments and procedures, namely for operation and maintenance, other than those specified herein may result in hazardous radiation exposure or impair the protection provided by this unit.

WARNING
If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

WARNING
Use only accessories designed for your unit and approved by EXFO. For a complete list of accessories available for your unit, refer to its technical specifications or contact EXFO.
Refer to the documentation provided by the manufacturers of any accessories used with your EXFO product. It may contain environmental and/or operating conditions limiting their use.

When you see the following symbol on your unit, make sure that you refer to the instructions provided in your user documentation. Ensure that you understand and meet the required conditions before using your product.

When you see the following symbol on your unit, it indicates that the unit is equipped with a laser source, or that it can be used with instruments equipped with a laser source. These instruments include, but are not limited to, modules and external optical units.

Other safety instructions relevant for your product are located throughout this documentation, depending on the action to perform. Make sure to read them carefully when they apply to your situation.
Laser Safety Information for FTB-7000/FTB-700Gv2/FTB/FTBx/MAX-700C Series (Units without VFL)

Your instrument is in compliance with standards IEC 60825-1: 2007 and 2014.

WARNING

(IEC 60825-1: 2007) Viewing the laser output with certain optical instruments designed for use at a distance (for example, telescopes and binoculars) may pose an eye hazard.

WARNING

(IEC 60825-1: 2014) Viewing the laser output with telescopic optical instruments (for example, telescopes and binoculars) may pose an eye hazard and thus the user should not direct the beam into an area where such instruments are likely to be used.

Laser radiation may be encountered at the optical output port.

The following labels indicate that the product contains a Class 1M source:
Safety Information

Laser Safety Information for FTB-7000/FTB-700Gv2/FTB/FTBx/MAX-700C Series (Units without VFL)

Wavelength: / Longueur d’onde : 800-1300 nm
Pulse width: / Largeur de l’impulsion : \(\leq 1 \mu s \)
Max. peak power: / Puissance crête maximum : \(\leq 500 \text{ mW} \)

Wavelength: / Longueur d’onde : 1250-1400 nm
Pulse width: / Largeur de l’impulsion : \(\leq 20 \mu s \)
Max. peak power: / Puissance crête maximum : \(\leq 260 \text{ mW} \)

Wavelength: / Longueur d’onde : 1400-1700 nm
Pulse width: / Largeur de l’impulsion : \(\leq 20 \mu s \)
Max. peak power: / Puissance crête maximum : \(\leq 600 \text{ mW} \)

Laser Safety Information for FTBx-740C DWOCC and MAX-740C DWOCC Modules (Units without VFL)

Your instrument is in compliance with standard IEC 60825-1: 2014.

WARNING

Viewing the laser output with telescopic optical instruments (for example, telescopes and binoculars) may pose an eye hazard and thus the user should not direct the beam into an area where such instruments are likely to be used.

Laser radiation may be encountered at the optical output port.

The following labels indicate that the product contains a Class 1M source:

- **INVISIBLE LASER RADIATION**
 - DO NOT EXPOSE USERS OF TELESCOPIC OPTICS
 - CLASS 1M LASER PRODUCT

- **RAYONNEMENT LASER INVISIBLE**
 - NE PAS EXPOSER LES UTILISATEURS DE DISPOSITIF OPTIQUE TÉLESCOPIQUE
 - APPAREIL À LASER DE CLASSE 1M

Wavelengths: / Longueurs d’onde : 1525-1570 nm

Pulse width: / Largeur de l’impulsion : $t \leq 20 \mu s$

Max. peak power: / Puissance crête maximum : $P \leq 600$ mW

Complies with FDA performance standards for laser products except for conformance with IEC 60825-1 Ed. 3, as described in Laser Notice No. 56, dated May 8, 2019.
Laser Safety Information for FTB-7000 Series (Units with VFL)

Your instrument is in compliance with standards IEC 60825-1: 2007 and 2014.

Laser radiation may be encountered at the output port. It is potentially harmful in direct intrabeam viewing.

The following label(s) indicate that the product contains a Class 3R source:

Laser Safety Information for MAX-700C Series (Units with VFL)

Your instrument is in compliance with standards IEC 60825-1: 2007 and 2014.

Laser radiation may be encountered at the optical output port.

The following label(s) indicate that the product contains a Class 2 source:

Laser Safety Information for FTBx-740C DWOCC and MAX-740C DWOCC Modules (Units with VFL)

Your instrument is in compliance with standard IEC 60825-1: 2014.

Laser radiation may be encountered at the optical output port.

The following label(s) indicate that the product contains a Class 2 source:

Complies with FDA performance standards for laser products except for conformance with IEC 60825-1 Ed. 3, as described in Laser Notice No. 56, dated May 8, 2019.
Laser Safety Information for MAX-700B Series

Your instrument is in compliance with standards IEC 60825-1: 2007 and 2014.

WARNING

(IEC 60825-1: 2007) Viewing the laser output with certain optical instruments designed for use at a distance (for example, telescopes and binoculars) may pose an eye hazard.

WARNING

(IEC 60825-1: 2014) Viewing the laser output with telescopic optical instruments (for example, telescopes and binoculars) may pose an eye hazard and thus the user should not direct the beam into an area where such instruments are likely to be used.

Laser radiation may be encountered at the optical output port.

The following labels indicate that the product contains a Class 1M source:
Safety Information

Electrical Safety Information

Wavelength: / Longueur d’onde : 1300-1400 nm
Pulse width: / Largeur de l’impulsion : \(\leq 20 \mu s \)
Max. peak power: / Puissance crête maximum : \(\leq 260 \text{ mW} \)

Wavelength: / Longueur d’onde : 1400-1700 nm
Pulse width: / Largeur de l’impulsion : \(\leq 20 \mu s \)
Max. peak power: / Puissance crête maximum : \(\leq 600 \text{ mW} \)

Electrical Safety Information

For more information on product safety and equipment ratings, refer to the user documentation of your platform.

The power consumption for all intelligent Optical Link Mapper modules is below 10 W.
3 Getting Started With Your iOLM

Note: Please refer to your platform’s or unit’s user guide for detailed information regarding inserting and removing test modules, and starting applications.

Note: Some features for this application are enabled when you purchase the corresponding options. For more information on the software options available for your unit, see Software Options on page 13. For details on how to activate an option, refer to your platform’s or unit’s user guide.

Main Window

The main window allows you to start the acquisition and view measurement results and values.

Note: Your screen display may differ slightly from the illustrations presented in this user guide depending on the platform you are using.
Status Bar

The status bar, located at the bottom of the main window, identifies the selected configuration file name in the application, acquisition wavelength (when an acquisition is in progress), and the acquisition progress bar of the iOLM. It also displays the next file name according to the autonaming scheme. For more information, see Naming Trace Files Automatically on page 32.

Note: When an acquisition is not in progress, the file name of the file currently present in memory is displayed.
Connecting an Optical Switch to the iOLM

The IPRO software option enables you to perform multifiber iOLM test measurements in singlemode, using an externally controlled MPO optical switch.

With this software option, the MPO optical switch can be used for measurement automation. Since the MPO automation is designed for short MPO links, which are typically found in data centers, Short Link Close Events and Fast Short Link Optimodes are specifically designed for that kind of measurement. However, both Optimodes are limited in range. Refer to the iOLM technical specifications for more details.

The optical switch is used automatically. A USB cable provides the connection between the platform and the optical switch. For more information, see Configuring Your iOLM on page 38.

Note: To allow the iOLM to detect the optical switch, you should use a patchcord shorter than 20 meters to connect the iOLM to the optical port of the switch.
IMPORTANT

Handle MPO connectors carefully and always clean them before each connection. To avoid excessive loss and reflectance, the input and output connectors of the MPO switch must remain in perfect condition. With these type of connectors, keep the number of connections to a minimum.

Note: Refer to the user documentation that came with your external switch for more information.
Cleaning and Connecting Optical Fibers

IMPORTANT

To ensure maximum power and to avoid erroneous readings:

- Always inspect fiber ends and make sure that they are clean as explained below before inserting them into the port. EXFO is not responsible for damage or errors caused by bad fiber cleaning or handling.

- Ensure that your patchcord has appropriate connectors. Joining mismatched connectors will damage the ferrules.

To connect the fiber-optic cable to the port:

1. Inspect the fiber using a fiber inspection probe. If the fiber is clean, proceed to connecting it to the port. If the fiber is dirty, clean it as explained below.

2. Clean the fiber ends as follows:

 2a. Gently wipe the fiber end with a lint-free swab dipped in optical-grade liquid cleaner.

 2b. Use a dry swab to dry the connector completely.

 2c. Visually inspect the fiber end to ensure its cleanliness.
3. Carefully align the connector and port to prevent the fiber end from touching the outside of the port or rubbing against other surfaces.

If your connector features a key, ensure that it is fully fitted into the port's corresponding notch.

4. Push the connector in so that the fiber-optic cable is firmly in place, thus ensuring adequate contact.

If your connector features a screw sleeve, tighten the connector enough to firmly maintain the fiber in place. Do not overtighten, as this will damage the fiber and the port.

Note: *If your fiber-optic cable is not properly aligned and/or connected, you will notice heavy loss and reflection.*

EXFO uses good quality connectors in compliance with EIA-455-21A standards.

To keep connectors clean and in good condition, EXFO strongly recommends inspecting them with a fiber inspection probe before connecting them. Failure to do so will result in permanent damage to the connectors and degradation in measurements.
Installing the EXFO Universal Interface (EUI)

The EUI fixed baseplate is available for connectors with angled (APC) polishing. A green border around the baseplate indicates that it is for APC-type connectors.

EXFO strongly recommends to only use APC module connectors.

To install an EUI connector adapter onto the EUI baseplate:

1. Hold the EUI connector adapter so the dust cap opens downwards.

2. Close the dust cap in order to hold the connector adapter more firmly.

3. Insert the connector adapter into the baseplate.

4. While pushing firmly, turn the connector adapter clockwise on the baseplate to lock it in place.
Preparing Your iOLM for a Test
Naming Trace Files Automatically

Naming Trace Files Automatically

The autonaming feature is useful to make a relevant naming scheme for your tests. This also ensures that you do not overwrite measurements by mistake. You can select which item goes in the measurement name, as well as the type of separator you want to use in between.

Note: *The file name has a limit of 260 characters, including the folder name.*

A preview is available to show you the final output of the name.

The measurement name is made of one or more static parts (alphanumeric) and one or more variable parts (numeric) that will be incremented or decremented, as follows:

<table>
<thead>
<tr>
<th>If you choose incrementation...</th>
<th>If you choose decrementation...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable part increases until it reaches the highest possible value with the selected number of digits, then restarts at the indicated start value.</td>
<td>Variable part decreases until it reaches the stop value, then restarts at the highest possible value with the selected number of digits.</td>
</tr>
</tbody>
</table>

Note: *To decrement values, the start number must be higher than the stop number.*

After saving a result, the unit prepares the next file name by incrementing (or decrementing) the suffix.

A measurement can contain more than one file. You can use preset, or custom identifiers to help differentiate the measurements within the file.

Note: *Custom identifiers will be added to the measurement name if a corresponding value is set for them.*
The measurement names can be incremented using one or more identifiers. Selecting a single identifier will follow the incrementation (or decrementation) value you have set.

You can select the number of digits displayed for the incremented or decremented values.

Select "#" if you want to keep the value exactly in the same format as defined in the start and stop values. If a value is to be incremented from 1 to 10, it becomes 1, 2, 3, ... 9, 10. One "#" is the default format.

Select two, three, or four "#" if you want all values to be expressed with the same number of digits. The application fills the empty spaces with zeros before the increment or decrement to ensure the appropriate format is displayed. For example, if you select two "#" and the value is to be incremented from 1 to 10, it becomes 01, 02, 03, ... 09, 10.

The file name can be incremented using one or more identifiers. Selecting a single identifier will follow the incrementation (or decrementation) value you have set.

When selecting more than one identifier, the latter appear sequentially in the order that you have set, and the incrementation will start with the last item in the list (the one with the farthest indentation). For example, if you have a file name with the Location, Cable and Fiber identifiers, in that order, the first item to be incremented is the Fiber identifier, then Cable, then Location:

Location 1, Cable 1, Fiber 1
Location 1, Cable 2, Fiber 1
Location 1, Cable 2, Fiber 2
and so forth.

Note: *If you choose not to save a particular trace file, the suggested file name remains available for the next trace you acquire.*
This function is particularly useful when testing multiple-fiber cables. If you deactivate the automatic file naming function, you will need to specify a file name each time you save a result.

The autonaming parameters can be set for current measurements that have not been saved yet.

It is also possible to revert the settings to their default values. See *Reverting to Factory Settings* on page 37 for details.

To configure the automatic file naming:

1. From the Main Menu, tap Identification.

2. From the Apply to list, ensure that Next acquisition is selected.

3. Select the desired identifiers to include in the file name. You can change the order of appearance of the highlighted component with the up and down arrow buttons.

Note: When an identifier is set to *None*, its value is cleared and it cannot be edited unless you set it back to another value.
Preparing Your iOLM for a Test

Naming Trace Files Automatically

- **Current acquisition:** If you are working with standard loopback or bidirectional loopback measurements files, there are two **Value** columns, one for each fiber.
- **Next acquisition:** only one **Value** column is displayed.

Note: When working in unidirectional loopback, the direction is disabled because it will be set automatically by the loopback process. In a bidirectional loopback measurement, the direction is automatically set to Bidirectional.
4. If you want to increment automatically the cable ID, the fiber ID or any other custom identifier, proceed as follows:

4a. Tap the **Increment** button.

4b. In the **Increment** window, select the **Auto Increment** check box corresponding to the identifier you want to increment.

4c. Enter the start, stop and step values as desired.

Note: The identifiers are processed in order, from the one with the largest indentation to the one with the smallest. For a given identifier, when the increment value reaches the stop value, the incrementation automatically switches to the next identifier. The order of the identifiers in the increment window (and thereby the order of increment) follows the order of the identification window.
Preparing Your iOLM for a Test

Reverting to Factory Settings

Note: An identifier set to *None* will not appear in the increment window.

Note: To decrement values, the start number must be higher than the stop number.

4d. Select the format for the incrementation value. This will determine how many digits are used and the information will be displayed accordingly in the **Identification** window.

4e. Tap **OK** to return to the **Identification** window.

5. Tap **OK** to confirm your new settings and to return to the main window.

The new settings will apply the next time you perform an acquisition.

To clear the values:

1. From the **Main Menu**, tap **Identification**.
2. In the **Apply to** list, select **Next acquisition**.
3. Tap the **Clear Values** button.

4. Tap **OK** to return to the main window.

All values in the **Value** column are erased from the white boxes.

Reverting to Factory Settings

As long as the file was not already saved, you can revert to factory settings in your menus. However, the **Revert to Factory Settings** button is valid only for the window or tab where you use it.
Configuring Your iOLM

Depending on the type of unit you have purchased, you can configure your iOLM according to your testing needs. All the settings you can adjust in your configuration are conveniently located in a single tab. You can select the port and wavelengths to use; the values are preserved for the next acquisition.

If you include launch, receive and loop fiber lengths in your configuration, you can let the application determine the most appropriate launch and receive fiber values, or you can set them yourself.

When you specify a launch and receive fiber length manually, two different icons may appear when the fiber length is out of the recommended range. If you tap on the icons, the application then suggests the appropriate values.

- The ✗ icon appears if the provided values are required but not selected and if the values entered are not within the appropriate range.

- The ⚠ icon is displayed if the values are not within the appropriate range.

The help icon❓ opens a window suggesting the appropriate fiber length for an expected link loss. The icon is not available when a non-supported configuration is selected.
Configuring Your iOLM in Standard Mode

The standard mode allows you to test simple fibers with or without launch and receive fibers.

To configure the iOLM in standard mode:

1. From the main window, select the iOLM tab.

2. If the ICERT software option is activated, select the port to use for your test. The fiber core is also selected at this point; for C fibers, select 50 µm, and for D fibers, select 62.5 µm.

Note: When the ICERT software option is not activated, you cannot select a fiber type in the list of available choices.

Note: Even if the ICERT software option is activated, when the fiber type and port are defined in a specific test configuration, you cannot modify them in the iOLM tab. You need to edit the test configuration to modify them.
Preparing Your iOLM for a Test
Configuring Your iOLM

3. If you have a standard iOLM, select the wavelengths for the next acquisition. The available wavelengths depend on the iOLM module.

OR

If you have a DWDM or a CWDM module, select a channel filter and a specific channel. See Working With the DWDM Module on page 59 or Working With the CWDM Module on page 69 for details.

Standard iOLM

![Standard iOLM Configuration](image1)

DWDM and CWDM modules

![DWDM and CWDM Module Configuration](image2)
4. Specify if launch and receive fibers are connected to the link under test. See *Launch, Receive, and Loop Fibers* on page 9 for details.

If you want to let the application measure the launch and receive fiber lengths values automatically, go to step 5. You can also specify the launch and receive fiber lengths manually. To do so, go to step 6.

5. If you want to specify the launch and receive fiber lengths automatically, proceed as follows:

5a. Tap **Calibrate** to access the measurement assistant.
Preparing Your iOLM for a Test
Configuring Your iOLM

5b. Select the test fibers to measure and follow the instructions on-screen.

6. If you want to specify the launch and receive fiber lengths manually, enter the values in the corresponding boxes.

All values and settings you have selected, such as the port and wavelengths, are preserved for the next acquisition.
Configuring Your iOLM in Loopback Mode

The IPRO or ILOOP software options allow you to test in loopback mode. This mode is especially designed for testing cables formed of a pair of identical fibers of an equivalent length. The measuring time is optimized because two fibers are checked in a single measurement. If you have activated the option for your application, it is ready to use when needed. The loopback mode will give the best results if you follow the three rules below:

- Both fibers under test, that are connected to the loop, must have the same length.
- The launch and receive lengths must be specified correctly.
- The length of the loop must be specified correctly.

Note: You cannot use the files created using the loopback mode to perform a second loopback operation.

To configure the iOLM in loopback mode:

1. From the main window, select the iOLM tab.
2. If the ICERT software option is activated, select the port to use for your test. The fiber core is also selected at this point; for C fibers, select 50 \(\mu \text{m} \), and for D fibers, select 62.5 \(\mu \text{m} \).

Note: When the ICERT software option is not activated, you cannot select a fiber type in the list of available choices.

Note: Even if the ICERT software option is activated, when the fiber type and port are defined in a specific test configuration, you cannot modify them in the iOLM tab. You need to edit the test configuration to modify them.
3. If you have a standard iOLM, select the wavelengths for the next acquisition. The available wavelengths depend on the iOLM module.

OR

If you have a DWDM or a CWDM module, select a channel filter and a specific channel. See Working With the DWDM Module on page 59 or Working With the CWDM Module on page 69 for details.

Standard iOLM

![Standard iOLM screenshot]

DWDM and CWDM modules

![DWDM and CWDM modules screenshot]
4. Specify if launch, receive, and loop fibers are connected to the link under test. See Launch, Receive, and Loop Fibers on page 9 for details.

If you want to let the application measure the launch and receive fiber lengths values automatically, go to step 5. You can also specify the launch, receive and loop fiber lengths manually. To do so, go to step 6.

Note: The application cannot measure the loop fiber length automatically. You must specify the value manually.
Preparing Your iOLM for a Test

Configuring Your iOLM

5. If you want to specify the launch and receive fiber lengths automatically, proceed as follows:

5a. Tap **Calibrate** to access the measurement assistant.

5b. Select the test fibers to measure and follow the instructions on-screen.

5c. Proceed to step 7.
6. If you want to specify the launch, receive and loop fiber lengths manually, enter the values in the corresponding boxes.

7. When the Loop fiber checkbox is selected, you can choose to work with the Bidirectional (Loopback only) option or not.

Note: Bidirectional measurements are only available in singlemode.

All values and settings you have selected, such as the port and wavelengths, are preserved for the next acquisition.
Configuring Your iOLM to Work With the Optical Switch

Note: You cannot use the optical switch with the MAX/FTBx-740C-DWx and FTBx-740C-CW modules.

The IPRO software option also allows you to perform multifiber iOLM test measurements in singlemode, using an externally controlled MPO optical switch. See *Connecting an Optical Switch to the iOLM* on page 27 for details.

Note: The optical switch does not support the loopback mode.

To configure the iOLM to work with the optical switch:

1. From the main window, select the iOLM tab.
2. If the ICERT software option is activated, select the port to use for your test.

Note: When the ICERT software option is not activated, you cannot select a fiber type in the list of available choices.

Note: Even if the ICERT software option is activated, when the fiber type and port are defined in a specific test configuration, you cannot modify them in the iOLM tab. You need to edit the test configuration to modify them.

3. Select the wavelengths for the next acquisition. The available wavelengths depend on the iOLM module.
4. Specify if launch and receive fibers are connected to the link under test. See Launch, Receive, and Loop Fibers on page 9 for details.

Note: You must calibrate the launch and receive fibers with the measurement assistant to perform acquisitions.

5. Select the **Automate the multifiber switch acquisition** checkbox.
Preparing Your iOLM for a Test

Configuring Your iOLM

6. The application calibrates the launch and receive fiber length values automatically with the measurement assistant. The values cannot be set manually. To do so, proceed as follows:

6a. Tap Calibrate to access the measurement assistant.

Indicates that the value has been calculated by the measurement assistant.
6b. Select the test fibers to measure and follow the instructions on-screen.

Note: When the MPO optical switch is connected and you are using the measurement assistant, the loss and reflectance thresholds are defined by the application and cannot be changed. These thresholds represent the recommended values for optimal performance. Sometimes, the loss and reflectance values may not be within the optimal thresholds. The link measurement can still be performed, but the dynamic range and the resolution performance will be altered.

IMPORTANT

EXFO strongly recommends to scan all fibers during the calibration process to fully validate the test cable.

All values and settings you have selected, such as the port and wavelengths, are preserved for the next acquisition.
Enabling or Disabling the Cumulative Loss

The cumulative loss value is calculated for each wavelength, from the beginning of the link to a specific element or fiber section. This feature can be useful to locate the deterioration on a link by comparing new values with values taken previously on the same link. This option is not activated by default.

When comparing the values of the cumulated loss on the last event and the one displayed for the link loss, you may notice they can be different. This difference may be caused by the accumulation of uncertainties when the sum of the values is calculated.

The cumulative loss is not calculated for the elements before the link start and after the link end. See Launch, Receive, and Loop Fibers on page 9 for details.

Only the element representing a group of elements displays the cumulative loss value. See Viewing Results in the Link View on page 159 for details.

To enable or disable the cumulative loss:

1. From the Main Menu, tap the User Preferences button, then select the General tab.

2. Under Functionalities, select the Cumulative loss check box.

3. Tap OK to return to the main window.
Enabling or Disabling the Automated Acquisition Sequence

If your module is equipped with both an SM and an SM Live ports, you can perform automated acquisition sequences. The acquisition is always performed on the SM port first, and then on the SM Live port. If your module supports more than one wavelength, you need to select at least one wavelength to perform the acquisition on the SM port and one wavelength on the SM Live port.

When the feature is enabled, the application does not prompt you to connect the fiber on the SM Live port after the acquisition has been completed on the SM port.

When the feature is disabled, the application displays a message to indicate the moment you need to connect the fiber to the SM Live port. However, if you use a coupler between the fibers connected to the SM and SM Live ports, the application will perform the acquisitions one after another, and it will not prompt you.

The application allows you to generate a trace in Bellcore (.sor) format for both SM and SM Live wavelengths when the acquisition has been completed properly.

The acquisition stops automatically after it is complete but you can also stop it at any time while it is in progress.

Whether the feature is enabled or not, only one report is generated after the acquisition sequence is complete.
Prepared Your iOLM for a Test
Enabling or Disabling the Automated Acquisition Sequence

To enable or disable the automated acquisition sequence:

1. From the main window, select the iOLM tab.

2. Select an SM + SM Live port to use for your test.
3. Select the wavelengths to use for your test.

4. To enable the automated acquisition sequence, select the **Automate SM and SM Live sequence** check box.
5 Working With the DWDM Module

The MAX/FTBx-740C-DWx module allows you to perform specific acquisitions using the DWDM (dense wavelength-division multiplexing) technology in the C-band and is designed to test through field mux/demux channels. This high-resolution particular type of module provides complete end-to-end link characterization and helps troubleshooting metro Ethernet links as well as commercial services.

Based on the ITU-T standard grid, the MAX/FTBx-740C-DWx module covers a channel spacing of 50/100/200 GHz. The channel width used is always 50 GHz, regardless of the selected channel spacing.

Main Features

The MAX/FTBx-740C-DWx module offers the following:

- C-band ITU grid channel selection to test through DWDM ports
- Mux/demux and add/drop testing
- In-service testing of active networks
- High-resolution and short dead zones
- Selection in a customized favorite channels list
- Testing coupler elements defined as custom elements to determine their pass/fail thresholds (available with the CWDM-DWDM test configuration)
- Creation of MUX/DEMUX element type with custom threshold values for complete link certification and reporting
Selecting a Channel Filter

DWDM increases the bandwidth of an optical fiber by multiplexing several wavelengths onto it. Using the different channel spacings, the module can place several dozens of wavelengths on a single fiber. The channel filter selected by default is 100 GHz.

When you choose a channel filter, the list of available wavelengths is updated accordingly. If the channel that was selected before the change of filter is still available, it will remain selected by default. However, if the channel is no longer available after the change of channel spacing, the one nearest to your previous selection will be selected by default.

To select a specific channel filter:

1. From the main window, go to the iOLM tab.
2. From the Channel filter list, select a channel spacing width to use for your tests.

Note: The channels marked as favorites in the Selected channel list can be retrieved in the Channel filter list. See Managing Favorite Channels on page 62 for details.
Selecting a Channel

Based on the ITU-T DWDM frequency grid, the MAX/FTBx-740C-DWx module offers many wavelengths you can choose from.

Note: Changing the channel filter does not affect the selected channel unless it is not available with the new channel filter.

To select a specific channel:

1. From the main window, go to the iOLM tab.
2. From the **Selected channel** list, select a wavelength to use for your tests.
Managing Favorite Channels

You can add the channels you use the most often in a list of favorite channels and recall them for future acquisitions. You can also remove them from the list if they are not relevant anymore.

If you want to display the list of favorite channels only, you can do so.

To add favorite channels:

1. From the main window, go to the iOLM tab.
2. From the Selected channel list, select the wavelength you want to add to the list.
3. When the wavelength is highlighted in blue, tap the star icon.

When the star becomes yellow, it indicates the wavelength has been added to the list.
To remove favorite channels from the list:

1. From the main window, go to the iOLM tab.

2. From the Selected channel list, select a wavelength with a ❀ next to it.

3. When the wavelength is highlighted in blue, tap ❀.

Note: When the star is no longer yellow, it indicates the wavelength has been removed from the list.
To display the list of favorite channels only:

1. From the main window, go to the iOLM tab.

2. From the Channel filter list, select Favorite channels.

The list of favorite channels is displayed in the drop-down menu under Selected channel.
Testing Channels Sequentially

You can acquire traces sequentially for channels tagged as favorite channels.

The acquisitions are performed sequentially in the same order as the channels appear in the list of favorite channels as soon as you start an acquisition.

You can stop the acquisition at any time while it is in progress. The application stores the traces already acquired in the default folder you have defined. See Setting the Default Storage Folder on page 131 for details.

Note: Since the measurements are always saved, the settings for the automatic storage of the files are not taken into account when testing channels sequentially. See Enabling or Disabling the Automatic Storage of the Files on page 140 for details.

To test channels sequentially:

1. From the main window, go to the iOLM tab.
2. From the Channel filter list, select Favorite channels.
3. Select the **Sequential acquisitions of favorite channels** box.

The list of favorite channels is displayed in the drop-down menu under **Selected channel**.

The acquisitions are performed sequentially as soon as you tap the **Start** button.
Performing Live-Fiber Testing

During live-fiber testing, the light signals transmitted in other channels than the channel under test will be largely rejected by the mux/demux as well as the internal iOLM filters, but some residual light that reaches the light detector of the iOLM will increase the electronic noise. This residual light reduces the dynamic range, especially when larger pulse widths are used. The MAX/FTBx-740C module can test a channel while other channels are live but the channel under test must be dark.

Before performing a test on a specific channel, you have to disconnect the end of the link from the far-end transmitter/receiver device. Consequently, to test a transport fiber with active channels, you must connect the iOLM to a mux/demux port that contains no active channels or devices.
Working With the CWDM Module

The MAX/FTBx-740C-CW module covers up to 18 CWDM ITU channels, from 1270 nm to 1610 nm, with a channel spacing of 20 nm, and is designed to test through field mux/demux channels. This high-resolution particular type of CWDM (coarse wavelength-division multiplexing) module provides a complete end-to-end link characterization and helps troubleshooting commercial, C-RAN networks as well as metro Ethernet links deployments.

Note: The official channel values have been shifted by 1 nm (from 1271 nm to 1611 nm). Your iOLM was defined with the values of 1270 nm to 1610 nm for simplicity purposes, but is fully compatible with previous and present channel center wavelengths.

Main Features

The MAX/FTBx-740C-CW module offers the following:

- CWDM ITU grid channel selection to test through CWDM ports
- Up to 18 CWDM channels covered into a single port, depending on the type of OTDR model and available options
- In-service testing of active networks
- High-resolution and short dead zones
- Selection in a customized favorite channels list
- Testing coupler elements defined as custom elements to determine their pass/fail thresholds (available with the CWDM-DWDM test configuration)
Selecting a Channel Filter

The MAX/FTBx-740C-CW module offers two different channel filters. You can choose to work with all the wavelengths available on your unit or with your favorite channels. See *Managing Favorite Channels* on page 72 for details.

To select a specific channel filter:

1. From the main window, go to the **iOLM** tab.
2. Select a channel filter to use for your test.

Note: If no channel has been added to the **Favorite channels** list, the application selects **All** by default.
Selecting a Channel

Based on the ITU-T CWDM wavelength grid, the iOLM offers 18 wavelengths (from 1270 nm to 1610 nm) you can choose from.

To select a specific channel:
1. From the main window, go to the iOLM tab.
2. From the Selected channel list, select a wavelength to use for your tests.
Managing Favorite Channels

You can add the channels you use most often in a list of favorite channels and recall them for future acquisitions. You can also remove them from the list if they are not relevant anymore.

If you want to display the list of favorite channels only, you can do so.

To add favorite channels:

1. From the main window, go to the iOLM tab.

2. From the **Selected channel** list, select the wavelength you want to add to the list.

3. When the wavelength is highlighted in blue, tap 🌟.

When the star becomes yellow, it indicates the wavelength has been added to the list.
To remove favorite channels from the list:

1. From the main window, go to the iOLM tab.

2. From the Selected channel list, select a wavelength with a ∗ next to it.

3. When the wavelength is highlighted in blue, tap ∗.

Note: When the star is no longer yellow, it indicates the wavelength has been removed from the list.
To display the list of favorite channels only:

1. From the main window, go to the iOLM tab.
2. From the Channel filter list, select Favorite channels.

The list of favorite channels is displayed in the drop-down menu under Selected channel.
Testing Channels Sequentially

You can acquire traces sequentially for channels tagged as favorite channels.

The acquisitions are performed sequentially in the same order as the channels appear in the list of favorite channels as soon as you start an acquisition.

You can stop the acquisition at any time while it is in progress. The application stores the traces already acquired in the default folder you have defined. See Setting the Default Storage Folder on page 131 for details.

Note: Since the measurements are always saved, the settings for the automatic storage of the files are not taken into account when testing channels sequentially. See Enabling or Disabling the Automatic Storage of the Files on page 140 for details.

To test channels sequentially:

1. From the main window, go to the iOLM tab.
2. From the Channel filter list, select Favorite channels.
3. Select the **Sequential acquisitions of favorite channels** box.

The list of favorite channels is displayed in the drop-down menu under **Selected channel**.

The acquisitions are performed sequentially as soon as you tap the **Start** button.
Detecting Macrobends on Fiber Links

The CWDM module allows you to detect macrobends on fiber links only when you select the 1310 nm - 1550 nm wavelength combination in the channel filter list.

Note: You need to activate the CWDM-18W option to detect macrobends on fiber links. See Software Options on page 13 for details.

You can edit the macrobend detection threshold value. If you do not define one, the application will apply the default value of 0.5 dB automatically when you load a test configuration.

Note: The application cannot detect couplers on the fiber link when the 1310 nm-1550 nm wavelength combination is selected.

To detect macrobends on fiber links:

1. From the main window, go to the iOLM tab.

2. From the Channel filter list, select **1310 nm - 1550 nm**.
3. From the Main Menu, tap Test Configuration.

4. Select the configuration you want to edit and tap Modify.

5. Select the Link Definition tab.
6. Under **Element detection**, specify a macrobend detection value.

7. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.
Performing Live-Fiber Testing

During live-fiber testing, the light signals transmitted in other channels than the channel under test will be largely rejected by the mux/demux, but some residual light that reaches the connectors will increase the electronic noise. This residual light reduces the dynamic range, especially when larger pulse widths are used. The MAX/FTBx-740C-CW module can test a channel while other channels are live but the channel under test must be dark.

Before performing a test on a specific channel, you have to disconnect the end of the link from the far-end transmitter/receiver device. Consequently, to test a transport fiber with active channels, you must connect the iOLM to a mux/demux port that contains no active channels or devices.

Understanding Fiber Water Peak

When water molecules are trapped within the glass core structure of the fiber, the light absorbed, as well as the fiber attenuation, will increase around 1383 nm. This is known as a fiber water peak and is more pronounced on older fibers. When working with a CWDM module, you will notice that wavelengths 1370 nm and 1390 nm are more likely to be affected by this phenomenon. The accuracy of an iOLM measurement performed at one of these two wavelengths may be affected if there are high fiber water peak on specific fiber sections on the link. When this situation is detected, the iOLM will display a diagnosis on the link elements affected. See Understanding Diagnostics on page 143 for details.
Managing Test Configurations

A predefined default setup configuration is available when you purchase your unit. You can also create your own test configurations by duplicating an existing one and modifying the settings that will meet your specific needs.

IMPORTANT

Some threshold values may be different when a test configuration file is imported. If the thresholds differ for a given wavelength, the application uses the most restrictive threshold values.

Creating custom test configurations is done through duplicating an existing configuration, and then modifying the desired criteria. If you create configurations on one unit and want to transfer them to another unit, you can do so.
Impacts of Test Configurations

Before performing an acquisition, you can select or edit a test configuration that fits the link under test. This configuration contains specific pass/fail thresholds and the definition of any expected PON splitter. Once selected, the configuration will be used for all following measurements.

Note: *Splitters are not supported if you are working with a MAX/FTBx-740C module.*

The configuration data is structured in the same way than an iOLM result file. Each result file contains the entire configuration data used for the measurement.

Using a test configuration may influence the minimum reach of the measurement in terms of loss. For instance, the expected loss budget of a link that includes splitters will force the acquisition to cover at least this loss budget. Because of this, using an accurate test configuration can improve the accuracy of the measurements. If an inaccurate configuration file is used, some link element types might be wrongly defined. For instance, if no splitter stage is defined, actual splitters will be described as splices or connectors. This will not affect the reflectance and loss values associated with the link elements, only their type. After a measurement is completed, a link element type can be changed in order to apply the correct pass/fail threshold. See *Editing Element Types* on page 178 for details.

The pass/fail thresholds defined in the configuration file will have no impact on the capacity of the iOLM application to perform measurements. Only the pass/fail status of the link or link elements will be determined by the user-defined thresholds.
Selecting a Test Configuration

The test configuration is selected to apply the configuration settings (thresholds, link definition parameters, etc.) in the iOLM application for the next acquisition.

The IADV software option enables you to perform a characterization of the fiber. With a singlemode module, the option detects the presence of splitters (1:N and 2:N) to ensure the fiber is connected to a splitter via a distribution fiber.

Note: *Splitters are not supported if you are working with a MAX/FTBx-740C module.*

Depending on the module you are using, different Optimode test configurations are available. A software option is available to give you access to different Optimodes. Optimodes use an algorithm intended for specific use cases, which overpasses the iOLM standard mode performances in given testing topologies.

Note: *The Optimode has been designed and optimized to work in specific use cases. If it is used in situations other than what it was designed for, it may cause your unit to display odd results.*

Refer to the iOLM technical specifications for the Optimode available and the appropriate specifications. You can also contact EXFO to ensure the Optimode is designed for your use cases. See *Testing Modes* on page 7 for details.
Managing Test Configurations
Selecting a Test Configuration

To select a test configuration:

1. From the Main Menu, tap Test Configuration.

2. In the list of available test configurations, select the configuration you want to use and tap Close.
Creating a Test Configuration

You can create your own test configurations by duplicating an existing one and modifying the settings to fit your needs.

To create a test configuration:

1. From the **Main Menu**, tap **Test Configuration**.

2. Select the row corresponding to the configuration that is the closest to the one you want to create, then tap **Duplicate**.
Managing Test Configurations

Creating a Test Configuration

3. A default name is suggested for the new configuration. Change the name as needed, then tap Save.

Note: You cannot have two configurations with the same name.

4. Tap the Modify button to change the settings according to your needs:
 - Properties: This is where you can change the name of the configuration, select the port (singlemode, multimode or unspecified) as well as the Optimode you will use. See Setting the Test Configuration Properties on page 87 for details.
 - Link Definition: This is where you can select the fiber type for your test configuration and the number of connections and splices. See Defining the Link for Your Test on page 92 for details.
 - iOLM P/F Thresholds: This is where you can select the certification standards for your test configuration and edit the pass/fail thresholds. See Selecting Certification Standards on page 105 for details.
 - OPM P/F Thresholds: This is where you can set the thresholds for your power meter. See Setting Custom Power Meter Thresholds on page 147 for details.

5. Tap OK to confirm your changes and close the window. Tap Cancel to ignore your changes and close the window.
Setting the Test Configuration Properties

The properties for your test configuration include its name, as well as the Optimode you will use.

With the IADV software option you can specify an acquisition time and a pulse width in your iOLM configurations. This pulse width will be applied when generating an .sor file.

A longer pulse allows you to probe further along the fiber, but results in less resolution. A shorter pulse width provides higher resolution but less distance range. The available distance ranges and pulse widths depend on your iOLM model.

Note: Not all pulse widths are compatible with all distance ranges.

You can choose to set the pulse width to auto and let the application use the most appropriate pulse on the link.

To change the test configuration properties:

1. From the **Main Menu**, tap **Test Configuration**.

2. Select the configuration you want to edit and tap **Modify**.
Managing Test Configurations

Setting the Test Configuration Properties

3. Select the **Properties** tab.

4. If desired, change the configuration name by tapping in the corresponding field and entering your information.

Note: You cannot have two test configurations with the same name.
5. Select the port you want to use and if you have a standard iOLM, select the wavelengths as well.

Note: You should select *Unspecified* when a test configuration has no defined ports or wavelengths.

6. If you have a DWDM or a CWDM module, select a channel filter and a specific channel. See *Working With the DWDM Module* on page 59 or *Working With the CWDM Module* on page 69 for details.
Managing Test Configurations
Setting the Test Configuration Properties

7. Select the Optimode you will use for your test.

8. If you want to change the pulse width and acquisition time, proceed as follows:

8a. Tap the SOR Pulse Editor button.
8b. Select the new pulse and acquisition time values to use.

8c. Tap OK to exit the SOR Custom Pulse Editor window.

9. Tap OK to confirm your changes and close the window. Tap Cancel to ignore your changes and close the window.
Defining the Link for Your Test

You can set many criteria to define the link related to a specific test configuration you want to test.

You can specify a fiber type for the link in your configuration. The available fiber types will differ depending if you have a singlemode or a multimode module:

Note: The fiber type can be changed only if the ICERT software option is enabled on the unit.

<table>
<thead>
<tr>
<th>Available Ports</th>
<th>Fiber Type</th>
<th>Fiber Core</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlemode or Singlemode Live</td>
<td>Unspecified</td>
<td>Various</td>
<td>➤ You will have to chose the fiber type in the iOLM tab.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>➤ All of the possible standards are available in the iOLM P/F Thresholds tab.</td>
</tr>
<tr>
<td>OS1</td>
<td>Singlemode</td>
<td>9 μm</td>
<td>Fiber jacket is yellow.</td>
</tr>
<tr>
<td>OS2</td>
<td></td>
<td></td>
<td>Low water peak fiber designed for CWDM operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber jacket is yellow.</td>
</tr>
</tbody>
</table>
Managing Test Configurations

Defining the Link for Your Test

You will have to choose the fiber type in the iOLM tab.

► All of the possible standards are available in the iOLM P/F Thresholds tab.

### Available Ports	Fiber Type	Fiber Core	Comments
Multimode | Unspecified | Various | ▶ You will have to choose the fiber type in the iOLM tab.

► All of the possible standards are available in the iOLM P/F Thresholds tab.

OM1 Multimode 62.5 μm Modal Bandwidth: 200-500 MHz·km.
Fiber Channel Designation: M6.
Fiber jacket is orange or slate.

OM2 Multimode 50 μm Modal Bandwidth: 500 MHz·km.
Fiber Channel Designation: M5.
Fiber jacket is orange.

OM3 Modal Bandwidth: 1500-2000 MHz·km.
Laser optimized (VCSEL) at 850 nm.
Fibre Channel Designation: M5E.
Fiber jacket is aqua.

OM4 Modal Bandwidth: 3500-4700 MHz·km.
Laser optimized (VCSEL) at 850 nm.
Fiber Channel Designation: M5F.
Fiber jacket is aqua or violet.
Managing Test Configurations

Defining the Link for Your Test

<table>
<thead>
<tr>
<th>Available Ports</th>
<th>Fiber Type</th>
<th>Fiber Core</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlemode and</td>
<td>Unspecified</td>
<td>Various</td>
<td>You will have to choose the fiber type in the iOLM tab.</td>
</tr>
<tr>
<td>Multimode</td>
<td></td>
<td></td>
<td>All of the possible standards are available in the iOLM P/F Thresholds</td>
</tr>
<tr>
<td>OS1</td>
<td>Singlemode</td>
<td></td>
<td>Fiber jacket is yellow.</td>
</tr>
<tr>
<td>OS2</td>
<td>9 μm</td>
<td></td>
<td>Low water peak fiber designed for CWDM operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber jacket is yellow.</td>
</tr>
<tr>
<td>OM1</td>
<td>Multimode</td>
<td></td>
<td>Modal Bandwidth: 200-500 MHz·km.</td>
</tr>
<tr>
<td></td>
<td>62.5 μm</td>
<td></td>
<td>Fiber Channel Designation: M6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber jacket is orange or slate.</td>
</tr>
<tr>
<td>OM2</td>
<td>Multimode</td>
<td></td>
<td>Modal Bandwidth: 500 MHz·km.</td>
</tr>
<tr>
<td></td>
<td>50 μm</td>
<td></td>
<td>Fiber Channel Designation: M5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber jacket is orange.</td>
</tr>
<tr>
<td>OM3</td>
<td></td>
<td></td>
<td>Modal Bandwidth: 1500-2000 MHz·km.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laser optimized (VCSEL) at 850 nm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fibre Channel Designation: M5E.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber jacket is aqua.</td>
</tr>
<tr>
<td>OM4</td>
<td></td>
<td></td>
<td>Modal Bandwidth: 3500-4700 MHz·km.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laser optimized (VCSEL) at 850 nm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber Channel Designation: M5F.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiber jacket is aqua or violet.</td>
</tr>
</tbody>
</table>
The list of certification standards in the **iOLM P/F Thresholds** tab will be filtered according to the type of fiber selected. To see the complete list of standards, select the unspecified fiber type.

When you select a fiber type in the test configuration (one other than unspecified), the application performs a consistency check relative to the previously selected standards and lets you know if there are problems.

The number of custom elements and splitters is used to calculate the dynamic loss budget of the custom thresholds. However, these elements are not used for cabling certification.

Note: *Splitters are not supported if you are working with a MAX/FTBx-740C module.*

The splitter ratios can also be defined for a specific link. The PON network can have multiple splitters. The iOLM application supports testing a PON network having a maximum of three splitters.

When setting splitter ratio stage 1, the 2:N splitter can be used to create network redundancy. If a network break occurs, the operator can connect through the other network branch. This ensures active communication while the repairing of the broken network is in progress.

To better suit your needs, you can modify the IOR and backscatter (dB) values according to the core size you have selected. However, the core size cannot be modified for 1550 nm wavelengths.

Another criteria that you can edit are called custom elements. They allow you to apply specific thresholds to components of your link under test so that you can obtain a pass or fail status.
You can select between basic element types: splice, connector, coupler or, splitter. Each element type is represented by a specific default icon. You can also use your own images to represent the basic element types as long as the images are in .png format and 54 x 54 pixels. This can be useful to indicate a specific event on a link. You can retrieve images from the default folder (Public Documents/Custom Elements) or from another folder according to your needs. Reverting to factory settings resets the icons of the basic element types and recreates the Public Documents/Custom Elements folder if it is missing. It does not erase the images you have already created.

Once they are created, the custom elements can be modified at any time or removed, according to your testing needs.

Note: You can edit the custom elements you have created only if the IADV software option is enabled on the unit.

If needed, you can edit the macrobend detection threshold value. If you do not define one, the application will apply the default value of 0.5 dB automatically when you load a test configuration.

To create a custom element using the default icon:

1. From the Public Documents/Custom Elements folder, make a copy of an existing image.

Note: It is easier to use the Default.png icon and to customize it.

2. Change the name of the image.

3. Modify the image according to your needs.

Note: The image must be 54 x 54 pixels and in .png format.

4. Save the image.
Managing Test Configurations

Defining the Link for Your Test

To define the link for your test configuration:

1. From the Main Menu, tap Test Configuration.

2. Select the configuration you want to edit and tap Modify.

3. Select the Link Definition tab.
4. If you have a standard iOLM, under Splitters, select the split ratio of a splitter at a given stage.

 - Select 1:? if the splitter ratio is unknown. The iOLM finds the splitter ratio automatically and the element is not tested for pass/fail.

 - If None is selected, the iOLM will not try to find or apply a split ratio at the given stage.

 Note: The splitter ratios are defined at different stages, depending on how they are defined in the network.

OR

If you have a DWDM or a CWDM module, go directly to step 6.

 Note: The bidirectional loopback measurements are not supported by 1:N splitter and 2:2 splitter elements.
5. If the IADV software option is activated, you can enable the 2:N splitter for the **Splitter ratio stage 1** field by selecting the check box.

Note: The bidirectional loopback measurements are not supported by 1:N splitter and 2:2 splitter elements.

Note: When **1:**? or **None** is selected and you have enabled the 2:N splitter option, the **1:**? and **None** are replaced by a splitter value of 2:2.

6. If the ICERT software option is activated, select the fiber type in the list of available choices.
7. If the ICERT software option is activated, specify the number of connections on your link.

8. If the ICERT software option is activated, specify the number of splices on your link.
9. If the IADV software option is activated and you want to edit the custom elements, proceed as follows:

9a. Tap the **Edit Custom Elements** button.

9b. In the **Custom Elements** dialog box, to add a custom element or modify the name of an existing element, enter the new name in the **Name** column.

Note: The name of the custom element can contain a maximum of 12 characters.
Defining the Link for Your Test

9c. Select the custom element type under the **Type** column.

9d. If desired, under the **Icon** column, tap the icon that you want to modify. The button appears to allow you to select your image.

Note: The custom icons are located in the default folder unless you have changed the path. The icons must be 54 x 54 pixels.

Note: Tap the icon beside the custom element which you want to delete.

9e. Tap **OK** to save the changes and close the dialog box, or tap **Cancel** to exit without saving.

Note: The **Revert to Factory Settings** button does not change the modifications made in the **Custom Elements** dialog box. It only resets the icons of the basic element types and recreates the Public Documents/Custom Elements folder if it is missing.

10. If the ICERT software option is activated and you want to use the custom elements you have created in the dynamic loss budget calculation, proceed as follows:

10a. Select a custom element in the list of available choices.

10b. Specify the number of elements you want to add on the link.
11. Under **Fiber Properties**, you can modify the **Core size**, **IOR** and **Backscatter (dB)** values.

Note: The core size cannot be modified for 1550 nm wavelength.

Note: For the multimode wavelengths, the values are defined at 850 nm while the values are defined at 1550 nm for the singlemode wavelengths. The iOLM application automatically calculates the IOR and backscatter values for other wavelengths.
12. If necessary, specify a macrobend detection value.

13. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.
Selecting Certification Standards

Note: This function is available with the ICERT software option only.

The committees and standards configurations you can choose from are grouped by categories. You can select more than one standard and you can select standards from different categories at the same time; the most restrictive values of the selected standards are then used to determine if the test results in a pass or fail status.

Standards are divided into two main categories:

- **Cabling**: Ensures that the connections and splices are made properly and cumulate fewer losses than the normally expected maximum values. The thresholds are adjusted according to the number of connections and splices, and the thresholds also take into account the normal attenuation of the fiber. They can vary from one type of fiber to another and according to the length of the link. These thresholds do not take into account the limitations of specific communication protocols. There are international standards, but also versions that are more regional, such as for Europe, or specific countries. These standards can evolve with time according to technological progresses. It is therefore important to know which standard to refer to, because the thresholds can be different. Some examples of cabling standards include TIA-568, ISO/IEC 14763 and ISO/IEC 11801.

- **Application**: These standards are used to validate that a given link can allow a flow according to a communication protocol. They rest on fixed thresholds, which are maximum link loss and length values. These thresholds do not take into account the link topology (number of connections and splices). A short link could, for instance, allow more connections than a longer link. The important factor is to remain within the specified fixed thresholds. Examples of application standards include Ethernet and Fibre Channel.
Managing Test Configurations
Selecting Certification Standards

When a cabling standard is selected, you will need to manually provide the number of connections and splices to correctly calculate the link loss budget (see Defining the Link for Your Test on page 92 for details). The more there are connections and splices, the greater the link loss budget is.

Predefined standards are available for you to select, or you can create a custom setting.

To select predefined certification standards:

1. From the Main Menu, tap Test Configuration.

2. Select the configuration you want to edit and tap Modify.

3. Select the iOLM P/F Thresholds tab.
4. In the available items of the configuration, select the certification committee you want and tap the button at the end of the row.

Note: Depending on the category you select, you may have to tap again to access the list of available certification types.

5. Select which items of this certification type you want to include.

6. Tap **Back** to go to the previous level and select other standards as needed.

7. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.
To create custom pass/fail thresholds for fixed or dynamic loss budget:

1. From the Main Menu, tap Test Configuration.

2. Select the configuration you want to edit and tap Modify.

3. Select the iOLM P/F Thresholds tab.
4. In the available items of the configuration, select **Custom** and tap the button at the end of the row.

5. Tap the button at the end of the row again to access the custom threshold window.

6. When the ICERT software option is activated, select the dynamic loss budget that fits your needs according to the chosen fiber type:

 ► **Fixed**: You can specify threshold values for the fiber section attenuation, as well as the minimum and maximum link loss values, for each wavelength. You can also set values for the maximum link ORL (Optical Return Loss), and the minimum and maximum link length.

 Note: *The attenuation threshold value is measured only if the analysis allows the calculation of the attenuation on the fiber section.*

 The ORL represents the total effect of multiple reflections and scattering events within a fiber-optic system.
Managing Test Configurations

Selecting Certification Standards

- Dynamic: The dynamic loss budget is calculated according to the fiber length and the elements included in the link definition (such as the number of splices, connections, custom elements, as well as splitters).

Note: Splitters are not supported if you are working with a MAX/FTBx-740C module.

Note: You can only use one custom element type in the dynamic loss budget calculation.

The link attenuation, as well as the loss values for the splices, connections, and the first and last connections will all be used to calculate the loss budget.

If there is no specific value for the first or last connector, the application will use the value specified for connectors in general.
You can also activate both options at the same time. The more restrictive thresholds of the two types will be considered when testing.

When the fiber type is specified in the link definition (see Defining the Link for Your Test on page 92 for details), you can edit thresholds for this fiber type only. If you have selected unspecified as the fiber type, you can specify threshold values for each available fiber type.

Enter the values you want to use as thresholds in the corresponding cell tables.

Note: The minimum link length and link loss cannot be greater than the maximum link length and link loss.
Select the **Apply thresholds to elements** check box to edit the maximum loss (dB) and maximum reflectance (dB) for the splice and connector.

IMPORTANT

An empty cell in the link threshold table means NO THRESHOLD is applied on the acquisition. If you want to set zero as a threshold value, enter 0 in the corresponding cell.
8. Select the wavelength on which you want to apply the customized pass/fail thresholds.

9. Tap **Back** to return to the previous menu and set other configuration items. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.

Setting Custom Power Meter Thresholds

You can set thresholds for the maximum and minimum power, as well as the loss value for each wavelength you have set in the user preferences. See *Setting Custom Power Meter Thresholds* on page 147 for details.

Note: The **OPM P/F Thresholds** tab will only be available if an inline power meter is present in the module.
Modifying a Test Configuration

The test configurations you have created or imported can be modified to better fit your requirements.

Note: Depending on the type of unit or measurement, some configuration items may be unavailable.

To edit a test configuration:
1. From the Main Menu, tap Test Configuration.
2. Select the configuration you want to edit and tap Modify.
3. Change the criteria as required. See *Creating a Test Configuration* on page 85 for details.
Importing a Test Configuration

You can import test configurations from an external storage device.

IMPORTANT
Some threshold values may be different when a test configuration file is imported. If the thresholds differ for a given wavelength, the application uses the most restrictive threshold values.

Note: To be successfully imported, the test configurations and their duplicates need to be compatible with the hardware and software options available on the unit.

Note: If a USB device is connected to the module, the default path for import will be the USB device.

Note: You can only import one test configuration at a time.

To import a test configuration:
1. From the Main Menu, tap Test Configuration.
2. From the **Test Configuration** window, tap **Import**.

3. Select the file you want to import.

4. Tap **Open** to close the window. The imported configuration is added to the list automatically.
Exporting a Test Configuration

You can export test configurations to an external storage device.

Note: If a USB device is connected to the module, the default path for export will be the USB device.

Note: You can only export one test configuration at a time.

To export a test configuration:

1. From the **Main Menu**, tap **Test Configuration**.

2. From the **Test Configuration** window, select the test configuration you want to export.
3. Tap Export.

4. Select the folder where you want to export your file.

5. If desired, modify the file name.

6. Tap Save to close the window.
Deleting a Test Configuration

You can remove test configurations from your unit to keep only those relevant for your work.

Note: *You must always have at least one configuration in the test configuration window.*

To delete a test configuration:

1. From the **Main Menu**, tap **Test Configuration**.
Managing Test Configurations
Deleting a Test Configuration

2. Select the row corresponding to the configuration you want to remove, then tap Delete.

3. Confirm your choice.
Performing Acquisitions

The iOLM allows you to characterize a fiber-optic span, usually optical fiber sections joined by splices and connectors. The iOLM provides an inside view of the fiber, and can calculate fiber length, breaks, total return loss, as well as splice, connector, and total losses.

Performing a Standard or Loopback Acquisition

When an iOLM acquisition starts, the Link View tab is displayed by default. The progress of the overall acquisition for all wavelengths is displayed in the status bar. For example, if two wavelengths have to be processed, at the end of the first wavelength acquisition, the overall progress will be 50%.

The current wavelength is displayed in front of the acquisition progress.

You can perform standard and loopback acquisitions with the iOLM. For more information on how to perform a loopback measurement, see Configuring Your iOLM on page 38. To perform bidirectional loopback acquisitions, see Performing a Bidirectional Loopback Acquisition on page 123.
Performing Acquisitions

Performing a Standard or Loopback Acquisition

To perform an iOLM acquisition:

1. Ensure that the settings for the acquisition are already set. See Configuring Your iOLM on page 38 for details.

2. Tap Start (for standard and loopback measurements). If you are working with Optimode test configurations, the button will indicate Start Optimode.

The application will prompt you to save unsaved data (if any) before starting a new acquisition.
Performing a Bidirectional Loopback Acquisition

With the iOLM, you can perform bidirectional loopback acquisitions. The acquisition process is done in two main steps. The first acquisition can be repeated until the results are suitable for your needs. Then, you perform the second acquisition, which can be done only once.

To perform a bidirectional acquisition:

1. Ensure that the settings for the acquisition are already set. See Configuring Your iOLM on page 38 for details.

2. Select the Bidirectional (Loopback only) checkbox.
Performing Acquisitions

Performing a Bidirectional Loopback Acquisition

3. Select number **One** or **Two** depending on which direction you want to use to test the link first.

4. Tap Start.

Note: Depending on the number you have selected first, number One or Two turns blue to indicate that the acquisition was made.
Performing Acquisitions

Performing a Bidirectional Loopback Acquisition

5. If you are not satisfied with the result of the first acquisition, or if the application does not split the link, check the acquisition parameters and the fiber that is connected, then tap **Test Again**.

OR

Tap the **Reset Acquisition** button to clear the measurement.
Performing Acquisitions
Performing a Bidirectional Loopback Acquisition

The results of the first acquisition are available in the **Link View** tab.

6. Tap **Continue** to perform the second acquisition.

Note: *The second acquisition can only be performed once.*

When both measurements are split properly, the application generates the bidirectional measurement for the two fibers.
Stopping an Acquisition

The acquisition stops automatically after it is complete. You can also stop the acquisition at any time while it is in progress.

Note: *The unprocessed wavelengths will not be processed when a multiple wavelength acquisition is stopped manually.*

To stop the acquisition:

Tap **Stop** from the main window.

The numbers indicate the port of the switch on which the acquisition is underway.

The stopped acquisition status will be saved in the measurement file. It is also displayed in the **Info** tab. See *Viewing Measurement Information* on page 188 for details.

The global pass/fail status will show unknown or fail when the acquisition is stopped manually. See *Global Pass/Fail Status* on page 174 for details.

Note: *A manually stopped acquisition should not be considered as a reliable link measurement. To fully characterize a link, a complete acquisition should be performed.*
Monitoring Fibers in Real-Time Mode

The IADV software option enables you to view sudden changes in the fiber link by performing an OTDR acquisition in real-time mode. In this mode, the trace is refreshed until you stop the acquisition.

The OTDR will use the same distance units as the ones used in the iOLM application.

Note: You can only use one wavelength at a time to monitor your fiber.

To activate the real-time mode:

1. From the **Main Menu**, tap the **User Preferences** button, then select the **General** tab.
2. Select the **OTDR real time** check box.

3. Tap **OK** to close the window.

You are now ready to monitor fibers in real-time mode.
To monitor fibers in real-time mode:

1. From the iOLM tab, select the desired port (for live-fiber testing, select SM Live; for C fiber, select 50 μm and for D fiber, select 62.5 μm).

2. Tap Real Time.

Note: The timer is not displayed during real-time acquisition.

3. In the OTDR, from the wavelength list, tap the wavelength value (not the checkbox) corresponding to the wavelength that you want to monitor.

Note: You can change the range and pulse values during the real-time acquisition.
Performing Acquisitions
Monitoring Fibers in Real-Time Mode

To exit the real-time mode:

- If you want to stop monitoring and remain in the OTDR, tap **Stop RT**.
- If you want to stop monitoring and start an iOLM acquisition, tap **Start iOLM**.

OR

Tap ![Stop](image) to return to the iOLM application without starting an iOLM acquisition.

The iOLM application starts an acquisition with the parameters already set. The parameters set in the OTDR have no impact on the iOLM acquisition.
Customizing Your iOLM

You can customize the appearance and behavior of your iOLM application.

Setting the Default Storage Folder

You can change the default storage folder to better suit your needs. You can also work with a USB key. If the USB key is not connected to the device upon saving, the acquisitions are saved in the default storage folder. This path is used to save the iOLM files and OTDR Bellcore (.sor) files after an acquisition.

Note: The **Save As** button allows you to save your files to a folder different from the default storage folder. If you change the storage folder from the **Save As** dialog box, it will be used the next time you use the **Save As** feature again. The default storage folder will not be modified.

To set the default storage folder:

1. From the **Main Menu**, tap the **User Preferences** button, then select the **General** tab.

2. If you want to modify the default storage folder, select the **File Functionalities** check box.
3. Tap the button next to Default folder.

4. In the Browse For Folder window, select the location where you want to save the file.

5. Tap OK to exit the Browse For Folder window.

6. Tap OK to return to the main window.

Saving Files in Bellcore Format

If this feature is selected, whenever an iOLM bidirectional measurement is saved, three OTDR Bellcore (.sor) files are generated for each wavelength selected:

- one SOR file for A-B direction
- one SOR file for B-A direction
- one SOR file with the averaged loss of the elements

The wavelength value and the direction are appended to the file name and are separated with an underscore.

Upon saving, the files are sent to the default folder you have defined. See *Setting the Default Storage Folder* on page 131 for details.
To save files in Bellcore format:

1. From the Main Menu, tap the User Preferences button, then select the General tab.

2. If you want to save files in Bellcore format, select the File Functionalities check box.

3. Select the Export Bellcore file on save check box.

4. Tap OK to return to the main window.
Customizing Reports

You can generate reports directly from your unit in PDF format. Various items can appear on the report. When the IPRO or ILOOP software option are activated, you can generate a loopback measurement report that combines all links into one report as opposed to separate ones.

If you want to generate a report automatically each time a measurement is saved, see *Activating the Automated Report Creation* on page 135 for details. You can also generate a report manually. See *Generating a Report* on page 195 for details.

Note: You can only generate PDF reports for loopback measurements.

To customize reports:

1. From the **Main Menu**, tap the **User Preferences** button, then select the **Report** tab.
2. Select the check boxes according to your needs.

![User Preferences Window]

Note: The OTDR graph generation fails if the iOLM measurement does not contain the necessary intermediate OTDR data, if the iOLM acquisition process is interrupted by the user, or it is self interrupted because a live fiber is detected.

3. Tap **OK** to return to the main window.
Activating the Automated Report Creation

You can create a report based on the acquisitions results. When you activate the automated report creation feature, a report is automatically sent in the default folder you have defined each time a measurement is saved. See Setting the Default Storage Folder on page 131 for details.

If you want to generate a report manually, see Generating a Report on page 195 for details. To select the items that can appear on a PDF report, see Customizing Reports on page 134 for details.

To activate automated report creation:

1. From the Main Menu, tap the User Preferences button, then select the General tab.

2. If you want to generate a report automatically upon saving, select the File Functionalities check box.
3. Select the **Generate report on save** check box.

4. Tap **OK** to return to the main window.
Enabling or Disabling Sound Notifications

The application can emit a sound to inform you that important events are detected or when the acquisition sequence is complete.

To enable or disable sound notifications:

1. From the Main Menu, tap the User Preferences button, then select the General tab.

2. If you want to enable sound notifications, select the Sound notifications check box.

 OR

 If you prefer to disable sound notifications, clear the box.

3. Tap OK to close the window.
Displaying or Hiding Fiber Sections

You can select the section in the link view and the corresponding details of the selected section to be displayed in the Elements table.

To display or hide fiber sections:

1. From the Main Menu, tap the User Preferences button, then select the General tab.

2. If you want to display fiber sections, select the Fiber section check box.

 OR

 If you prefer to hide fiber sections, clear the box.

3. Tap OK to close the window.
Selecting the Distance Units

You can select the distance units that will be used throughout the application.

To select the distance units:

1. From the Main Menu, tap the User Preferences button, then select the General tab.

2. Select the distance unit in the list of available choices.

3. Tap OK to close the window.
Enabling or Disabling the Automatic Storage of the Files

By default, the application does not save the measurements automatically after an acquisition. However, you can configure it to save the measurements automatically. You can also specify if you prefer to store all the measurements regardless of the results, or only when the results have a pass status.

This feature is not available if you are working with the optical switch.

To enable or disable the automatic storage of the files:

1. From the Main Menu, tap the User Preferences button, then select the General tab.
2. Select the File Functionalities check box.
3. Select whether you want the measurements to be stored automatically regardless of the results, or only when the results have a pass status.

![User Preferences window showing automatic storage options]

Note: If the measurement was not automatically stored and you want to keep it, you will have to store it manually.

4. Tap **OK** to return to the main window.

The changes are applied automatically.
Diagnostics are used to provide additional information about detected problems or ambiguous measurement situations, such as root cause possibilities for the fail status of a link element. The diagnostics provide help to troubleshoot faulty connectors, understand why link elements are tagged as fail or unknown, indicate unexpected instrument or test conditions and so forth. More than one diagnostic can be associated with any given element.

Elements diagnostics are associated with specific link elements issues. Each failed link element will have associated diagnostics to assist in troubleshooting. Some elements, such as macrobends, will have associated diagnostics even with a pass status.

To view the diagnostics:
From the **Link View** or **Elements** tab, tap on the **i** icon next to the result you want to see.
11 Using the Inline Power Meter (Optional on Some Models)

Your unit may be equipped with an inline power meter allowing you to perform acquisitions.

Note: The OPM tab will not be available if no inline power meter is available for your unit.

Understanding the Inline Power Meter

The inline power meter in your module measures the power of the link through the SM Live port, which is also used for iOLM measurements.

Minimum and maximum power threshold values are displayed in the same window used to display the current power meter value. The pass/fail thresholds wavelength are the same as the current power meter reading.

The inline power meter can be equipped with two-channels for taking the power meter measurements at multiple wavelengths at once.

When two power meter values are displayed, one for each channel, according to the wavelength, two sets of minimum and maximum power threshold values are displayed side by side, one for each channel. Both values will be refreshed at the same time.
Using the Inline Power Meter (Optional on Some Models)

Understanding the Inline Power Meter

A visual representation of the power value for each channel is displayed and updated each time a new power value is measured. This visual representation of power value gives an idea of the power on a scale and power level versus pass/fail thresholds.
Setting Custom Power Meter Thresholds

You can set thresholds for the maximum and minimum power, and select the wavelength for which the different pass/fail threshold values can be specified. The available choices of wavelength depends on the iOLM module and the measurement mode you have selected for your tests. See Selecting the Measurement Mode on page 149 for details.

To set the power meter threshold values:

1. From the **Main Menu**, tap **Test Configuration**.

2. Select the configuration you want to edit and tap **Modify**.
Using the Inline Power Meter (Optional on Some Models)

Setting Custom Power Meter Thresholds

3. Select the **OPM P/F Thresholds** tab.

![Image of OPM P/F Thresholds tab selected]

4. Enter the desired values for the minimum and maximum power, and select the wavelength for which the different pass/fail threshold values can be specified.

![Image of OPM P/F Thresholds with values entered]

Note: *Any* will be displayed in the list of available wavelengths only if more than one wavelength is present. If you choose *Any*, the threshold values will be applied to all wavelengths present in the drop-down box.

5. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.
Selecting the Measurement Mode

You can use the optical power meter in two different modes. This will have an impact on the available wavelengths displayed in the OPM tab of the main window.

- You can use the FTTx/PON mode during service activation (at ONT) or to troubleshoot passive optical networks (at ONT, drop terminal, fiber distribution hub or CO). Depending on the configuration of the unit, you can measure more than one wavelength simultaneously.

- The CWDM mode is particularly useful if you want to measure networks or devices carrying only one wavelength. You can measure the output power (in dBm) or loss (in dB) using one of the CWDM wavelengths available.

To select the measurement mode:

1. From the Main Menu, tap User Preferences.
Using the Inline Power Meter (Optional on Some Models)

Selecting the Measurement Mode

2. Select the OPM tab.

3. Select the power meter mode.

Note: The selection of the power mode will have an impact on the available wavelengths displayed in the OPM tab of the main window.

4. Tap Apply to save the changes.

5. Tap OK to close the window. Tap Cancel to exit without saving.
Measuring Power Levels

The power meter level is refreshed in real time and can help you decide if an iOLM acquisition is required to identify the cause and location of a problem. Depending on your iOLM unit, you can select which wavelength you want to use from the list of available wavelengths. If no wavelength is selected, you cannot perform a power meter acquisition.

You can save the current power levels in a file for future reference and you can view this file anytime by loading it in the iOLM application.

The power levels are also displayed in the Link View tab under OPM.
Using the Inline Power Meter (Optional on Some Models)

Measuring Power Levels

To measure power levels:

1. Select the OPM tab.

2. Select the wavelengths at which you want to measure the power levels.

3. Tap Quick Save to save the power levels into a file.

Note: Upon saving, the file is automatically sent to the default folder you have defined in the user preferences. See Setting the Default Storage Folder on page 131 for details.
Performing an iOLM Acquisition with a Power Meter

The iOLM and power meter acquisition is performed together to save the iOLM acquisition results along with the power levels (power meter acquisition results) in a file for future reference.

The measurements are taken at the wavelengths selected from the list of available wavelengths.

The wavelengths used to take the power meter measurement during iOLM acquisition process are the same as those used to display power levels in real-time.

Note: The power meter acquisition is taken on the SM Live port of the iOLM.

To perform an iOLM acquisition with a power meter:

1. Select the OPM tab.
2. Select the wavelengths at which you want to take the power meter measurements.

![Image of OPM tab and wavelengths](image)

Note: Two power levels are considered for measurement when two wavelengths are selected from the **Wavelength(s)** drop-down box.
Using the Inline Power Meter (Optional on Some Models)
Performing an iOLM Acquisition with a Power Meter

3. Select a Singlemode Live port and the iOLM wavelengths from the iOLM tab.

4. Tap Start.
12 Using Your Module as a Source

You can operate the existing OTDR laser as a source to perform power meter measurements at the other end of the fiber. With this method, you can quickly locate the correct fiber or perform loss measurements.

To use the OTDR as a source:

1. From the main window, tap the Source tab.

2. If you have a standard iOLM, select the desired wavelength in the list of available choices.

OR

If you have a DWDM or a CWDM module, select a channel filter and a specific channel. See Working With the DWDM Module on page 59 or Working With the CWDM Module on page 69 for details.

Standard iOLM

Note: If you have a DWDM or a CWDM module, the parameters set in the iOLM tab are applied automatically in the Source tab. See Working With the DWDM Module on page 59 or Working With the CWDM Module on page 69 for details.
3. Select the desired modulation in the list of available choices.

- For loss measurement, with a power meter at the other end, select **Continuous**.

- For fiber identification, select **330 Hz, 1 kHz or 2 kHz**. This will allow the person at the other end of the link to identify the fiber under test, which could be particularly useful when working with cables containing many fibers.

For easier fiber identification, the application also offers a flashing pattern. If you select this pattern, the modulated signal (1 KHz or 2 KHz) will be sent for 1 second, then will be off for the next second, then be sent again for 1 second, and so on. If you want the OTDR to emit light in a flashing pattern, select **1 kHz + Blink** or **2 kHz + Blink**.

Standard iOLM

DWDM and CWDM modules
4. Tap **Turn On**. You can stop light emission at any time by tapping **Turn Off**.

Standard iOLM

The color red indicates that the source is active.

DWDM and CWDM modules
13 \textbf{Analyzing and Managing Results}

Once a measurement is performed, you can view the results in different tabs:

- **Link View**: shows an intuitive representation of a specific link, which combines several measurements results and value into a single view. See \textit{Viewing Results in the Link View} on page 159 for details.

- **Elements**: displays detailed results corresponding to the elements or sections selected in the link view. The loss and reflectance are displayed with appropriate coloring based on the pass/fail status of each value. See \textit{Viewing Results of Elements and Fiber Section Details} on page 176 for details.

- **Info**: indicates information about a measurement, such as the file name, acquisition date, and acquisition status. See \textit{Viewing Measurement Information} on page 188 for details.

- **Summary**: is only available when an externally controlled MPO optical switch is connected to the unit. See \textit{Viewing Multifiber Results} on page 189 for details.

\section*{Viewing Results in the Link View}

The link view is divided into different regions.

- **Link overview**: displays the entire link from the beginning of the link under test to the end. See \textit{Link Overview} on page 161 for details.

- **Link composition**: displays every element present on the link. Each element (except fiber section) has its own identification number. See \textit{Link Composition} on page 162 for details.

- **iOLM results**: present the acquisition results for all wavelengths at which the iOLM acquisition was performed. See \textit{iOLM Results} on page 170 for details.
Analyzing and Managing Results

Viewing Results in the Link View

- Power meter results (if power meter measurements are taken): present the acquisition results for all wavelengths at which the power meter acquisition was performed. See Power Meter Results on page 173 for details.

- Global Pass/Fail Status: shows the status of the link under test. See Global Pass/Fail Status on page 174 for details.
Link Overview

The link overview displays the entire link from the beginning of the link under test to the end.

The following color codes are used for the elements composing the link overview.

- **Red**: The status of the element is fail.
- **Green**: The status of the element is pass.
- **Blue**: The element is not tested for pass/fail or the status of the element is unknown.

The link overview representing all the elements found on the link is described below.
Viewing Results in the Link View

- Selected element: The rectangle indicates the position of the selected element in the link composition.
- Beginning of the link: The letter A (launch fiber) indicates the beginning of the link under test. See *Launch, Receive, and Loop Fibers* on page 9 for details.
- Visible region: The colored background represents the visible region in the link composition view.
- End of the link: The letter B (receive fiber) indicates the end of the link under test. See *Launch, Receive, and Loop Fibers* on page 9 for details.
- Length of the measured link: This value excludes the launch and receive fiber.

Elements before A and after B are referred to as *out of span* elements. These elements are not tested for pass/fail status, but can have diagnostics on them. If no receive fiber is defined, the element marked as "B" will not be tested for pass/fail.

Link Composition

The number of items displayed in the link composition varies according to the available space, number of elements, and section size. When the link length is too long, you may need to scroll on the link using the navigation arrow.

Note: The distance between the elements is not 100% proportional. To have a proportional representation of the element, see *Link Overview* on page 161.

The link composition displays every element present on the link. Each element (except fiber section) has its own identification number.

Note: The custom element types (including those represented by your own images) may appear in the link composition. See *Defining the Link for Your Test* on page 92 for details.
Standard measurement

- Navigation arrow
- Distance unit
- Element ID number
- Element position
- Splitter ratio
- Element Fail icon
- Element Pass icon
- Diagnostics icon
- Selected element
- Section
- Pass/Fail not tested

Loopback measurement

- Letter A
- Letter B
- Loop start
- Loop end
Analyzing and Managing Results

Viewing Results in the Link View

- **Diagnostics icon**: This icon specifies that some diagnostics are present on the element to provide additional information about detected problems or ambiguous measurement situations. See *Understanding Diagnostics* on page 143 for more details.

- **Element position**: This value represents the distance of the element from the beginning of the link under test.

- **Pass/Fail not tested**: The gray background indicates that the status of the element is unknown or it has not been evaluated because this element is not part of the link (out of span). If there is no pass or fail icon in the right side corner, it means that thresholds are not applied on this element and it is not tested for a pass or fail status. The element status remains unknown in the following scenarios:
 - If any element is followed by a 2:N splitter in the link, then the element’s loss pass/fail status is displayed as unknown.
 - If the element has a reflectance value and it is placed after the 2:N splitter element, then the element’s reflectance pass/fail status is displayed as unknown.
 - If the 2:N splitter is in a group of elements and an element follows the 2:N splitter in the group, then the pass/fail status of the group is displayed as unknown.

Note: *2:N splitters are not supported if you are working with a MAX/FTBx-740C module.*

- **Selected element**: The element outlined in blue indicates that it is currently selected.

- **Section**: A fiber section is delimited by two elements. Fiber sections do not have an identification number.

- **Element ID number**: A sequential number is assigned by the application for each element displayed along the link.

- **Element Pass icon**: Green is associated with a pass status.
Element Fail icon ✗: Red is associated with a fail status.

Splitter ratio: The value displayed on the element corresponds to the splitter ratio. See *Defining the Link for Your Test* on page 92 for details.

Distance unit: You can choose the distance units you will use for your measurements in a list of available choices. See *Selecting the Distance Units* on page 139 for details.

Navigation arrow: When more items are available on a particular side, it indicates that you have to scroll to view those items.

Letter A: This indicates the beginning of the link under test (launch fiber). The elements located before the beginning of the link do not have an identification number. See *Launch, Receive, and Loop Fibers* on page 9 for details.

Letter B: This indicates the end of the link under test (receive fiber). The elements located after the end of the link do not have an identification number. See *Launch, Receive, and Loop Fibers* on page 9 for details.

Note: An arrow () icon is displayed on the element when the start and the end of the link are represented by the same element.

Loop start icon LS: In loopback measurements, indicates the beginning of the loop.

Loop end icon LE: In loopback measurements, indicates the end of the loop.

Loop middle icon LM: In loopback measurements, this icon is displayed on the element if the loop is configured on a single element. The element can be a splice or a connector. When the length of the loop is set to zero, the loop is identified in the middle of the link. An item is automatically added to the links when no one is found.
In addition, you can have elements represented by specific icons.

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Element Icon</th>
<th>Element Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrobends</td>
<td>![Macrobend Icon]</td>
<td>Macrobends can be displayed in the link view when more than one wavelength is present in the measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Macrobends are not detected if you are working with a MAX/FTBx-740C-DWx module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The macrobend will always be displayed as a failed element.</td>
</tr>
<tr>
<td>Out of Range</td>
<td>![OutOfRange Icon]</td>
<td>The out of range element is displayed when the end of fiber could not be detected by the module because of insufficient dynamic range.</td>
</tr>
<tr>
<td>Splitter</td>
<td>![Splitter Icon]</td>
<td>The splitter is a passive fiber optic coupler that divides light from a single fiber into two or more fiber channels. The splitter ratio is displayed beside the icon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Splitters are not supported if you are working with a MAX/FTBx-740C module.</td>
</tr>
</tbody>
</table>
Viewing Results in the Link View

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Element Icon</th>
<th>Element Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:N Splitter</td>
<td></td>
<td>2:N splitter can be used to create network redundancy. If a network break occurs, the operator can connect through the other network branch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 2:N splitters are not supported if you are working with a MAX/FTBx-740C module.</td>
</tr>
<tr>
<td>Splice</td>
<td></td>
<td>The splice can indicate the junction of two fiber sections, the presence of a macrobend, or a microbend in the fiber.</td>
</tr>
<tr>
<td>Connector</td>
<td></td>
<td>The connector is used to join two fibers.</td>
</tr>
<tr>
<td>Switch</td>
<td></td>
<td>Indicates that a switch has been detected. See Connecting an Optical Switch to the iOLM on page 27 for details.</td>
</tr>
</tbody>
</table>
Viewing Results in the Link View

Sometimes, when the analysis detects several link elements that are too close to one another to be independently characterized, the link elements will be displayed as groups. When this occurs, as much information as possible will be displayed for each individual sub-element. The pass/fail status is applied to each sub-element whenever possible, and a global status is also displayed for the group.

Only one identification number is displayed for a group of elements and the cumulative loss value is displayed for the element representing the group. See Enabling or Disabling the Cumulative Loss on page 54 for details.

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Element Icon</th>
<th>Element Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault</td>
<td>![Fault Icon]</td>
<td>For the PON Last Mile measurement type, the fault icon indicates that a problem occurred during the analysis. For example, when a splitter is on the link, a loss and a section of fiber are expected after the splitter. If no splitter is found on the link but a end of fiber is detected, the fault icon is displayed instead of the end of fiber to indicate there is a problem.</td>
</tr>
<tr>
<td>Coupler</td>
<td>![Coupler Icon]</td>
<td>A coupler port is an optical fiber device with one or more input fibers and one or several output fibers. This device is associated with a minimum loss value; for example, a 1 1x2 coupler has a loss of 3 dB.</td>
</tr>
</tbody>
</table>
Groups can also be displayed when a link element (such as a splitter) is found to have wavelength dependent loss. In that case, the link element is grouped with a macrobend element. In this particular case, there might not be a physical macrobend next to the link element, but the macrobend icon is used to highlight the presence of the wavelength dependent loss.

Note: *Macrobends are not detected if you are working with a MAX/FTBx-740C-DWx module.*

When elements are grouped, the group loss and group reflectance values are also displayed in the **Elements** tab.

Note: *If some elements are grouped, the total group loss value is compared with the sum of the thresholds defined for the individual elements in a group. If the total group loss value is greater than the sum of the thresholds defined for the individual elements in a group, the element will show a fail status.*
You can select grouped elements individually as you would do with any other standalone element.

When elements are grouped at the beginning of the link, icon A is displayed on one of the sub-elements.

When elements are grouped at the end of the link, icon B is displayed on one of the sub-elements.

The elements located before the beginning of the link or after the end of the link do not have an identification number. See Launch, Receive, and Loop Fibers on page 9 for details.

iOLM Results

The iOLM acquisition results are displayed for all the wavelengths at which the iOLM acquisition was performed.

When an acquisition is performed with the MAX/FTBx-740C-DWx module, the ITU channel, followed by the frequency (in THz), and the center wavelength (in nm), is displayed in the iOLM acquisition results.

Note: *iOLM results are not displayed if they are not available.*

The custom elements represented by your own images may also appear in the drop-down list if any are defined.
When a multiple-wavelength acquisition is in progress, only the wavelength currently being acquired and the ones already completed are displayed. Link loss, link ORL, and propagation delay (multimode only) are displayed for each wavelength. For the link loss and the link ORL, the values are tested and displayed according to current pass/fail settings.

Note: The propagation delay (multimode only) is a global link measurement which is measured by the OTDR. It is defined by the amount of time necessary for a signal to travel from point A to point B. It may vary between wavelengths.

Note: If the link ORL value is displayed with a < symbol, it is saturated. A test to obtain a pass/fail status can reveal if the element is fail, but will not be able to specify a pass status.
Unidirectional and Bidirectional Loopback Results

The loopback measurement is especially designed for testing cables formed of a pair of identical fibers of an equivalent length. The measuring time is optimized because two fibers are checked in a single measurement.

The loopback results appear after a successful split.

➢ In the case of a uni-bidirectional loopback measurement:

You can navigate through the split measurement and the original measurement by selecting the appropriate icon at the top of the link view.

The original measurement is analyzed and the pass/fail thresholds are displayed for this measurement. However, there is no overall status for the original measurement. The overall status is only for the split measurements.

➢ In the case of a bidirectional loopback measurement:

After the first measurement is taken, the results are presented exactly as they would be for a non-bidirectional loopback measurement.

After the second measurement is taken, both measurements are split properly, and the application generates the bidirectional measurement for the two fibers.
Power Meter Results

The power meter acquisition results are displayed for all the wavelengths at which the power meter acquisition was performed.

Note: The power meter results are not displayed if they are not available.

More than one wavelengths can be displayed in the power meter section. All values are tested and displayed according to the current pass/fail settings.
Global Pass/Fail Status

The global pass/fail status depends on the pass/fail status of the link length, link loss, link ORL, power meter values (if taken), and the link elements. If any of the statuses is fail, then the global pass/fail status will be fail.

If you are working with a MAX/FTBx-740C module, the iOLM will automatically detect the coupler element (one of the elements that can be part of the link) in the following cases:

➢ A MUX is detected between the link start (element A) and the link end (element B) inclusively. When no launch fiber is defined, element A is excluded from the detection range.

➢ the iOLM looks for a DEMUX when a MUX is detected. The DEMUX will be placed between the MUX and the link end (element B) if the latter has a loss that can be measured (the receive fiber is long enough). If no element fits these criteria and no receive fiber is defined, the DEMUX is placed on the link end (element B).

Since no pass/fail thresholds are applied on coupler elements detected automatically by the application, the global pass/fail status is not affected by this specific element type. However, when you define the coupler element as a custom element, the thresholds applied on the coupler element affect the global pass/fail status directly. If no thresholds are defined for the custom coupler, this element will not be taken into account in the global pass/fail status. See Defining the Link for Your Test on page 92 for details.

The status is automatically updated when a value is modified in the application. When the element type is changed from the Elements tab, the individual pass/fail status is recalculated, which might affect the global pass/fail status. See Managing Elements and Analyzing Links on page 180 for details.
The iOLM application waits for the acquisition to finish before displaying the pass status. However, the fail status is displayed as soon as any of the values tested has a fail status. A fail value can change to unknown or pass when the acquisition is finished.

Note: *It is important to complete the entire acquisition process to have a good pass/fail status.*

The global pass/fail status of the iOLM measurement is displayed as unknown if there is no failed value and one element is not tested because it follows the 2:N splitter on the link.

Note: *2:N splitters are not supported if you are working with a MAX/FTBx-740C module.*

In loopback measurements modes, when the measurement is split (link 1 and link 2), the global pass/fail status is replaced by the link 1 and link 2 statuses.

Standard measurement

Loopback measurements
If you have selected more than one predefined certification standards to perform an acquisition, you can view which ones have a pass or fail status by tapping on the global pass/fail status icon.

Viewing Results of Elements and Fiber Section Details

When an element or fiber section is selected in the link view, the details of the corresponding selection are automatically displayed in the Elements tab. Each element (except fiber section) has its own identification number. However, some elements may be displayed as groups. When this is the case, only the element representing the group has an identification number. See Viewing Results in the Link View on page 159 for details.

The loss and reflectance results are displayed with appropriate coloring based on the pass/fail status of each value.

The loss or reflectance value may be underestimated if the noise level is too high (for instance, after a lot of loss on the link, the noise levels increase). In that case, it is possible for the signal processing algorithms to detect an element and estimate the loss/reflectance values, but since the measured signal does not completely clear the noise floor, the loss or reflectance/attenuation values are likely to be underestimated. Underestimated loss, reflectance, and attenuation values are displayed with a > symbol.

Note: If the loss or reflectance value is saturated, it is displayed with a > symbol. The application will be able to specify a fail status if the value is fail, but in all other cases, the application will set the status to unknown.
Analyzing and Managing Results

Viewing Results of Elements and Fiber Section Details

The 0.0 value is set on the first element when the launch fiber is present.

Note: You can select a section only if the **Fiber section** option is enabled in the **User Preferences** window. See Displaying or Hiding Fiber Sections on page 138 for details.

The cumulative loss values are not displayed for elements located before the beginning of the link or after the end of the link. See Enabling or Disabling the Cumulative Loss on page 54 and Launch, Receive, and Loop Fibers on page 9 for details.

To view elements or section details:

1. From the **Link View** tab, select the desired element or fiber section on the link composition.

2. Tap the **Elements** tab to view the selected element or section details.

![Diagram of intelligent Optical Link Mapper](image)

- Cumulative loss for each wavelength
- Beginning of the link
- End of the link
- Element ID number
Editing Element Types

Depending on the characteristics of a specific element, it may be possible to change its type.

Note: When an element is edited on a multimode wavelength, it is impossible to change the type of this element to a splitter.

To edit element types:

1. From the Elements tab, select the element you want to modify in the Type column.
2. Choose an element type from the list of available choices.

You can also change the splitter ratio if the selected element is a splitter.

Note: The custom element types appear in the **Type** list. If you have custom elements using your own images, they will also appear in the list. See Defining the Link for Your Test on page 92 for details.

Note: Splitters are not supported if you are working with a MAX/FTBx-740C module.

Note: When the type of an element is modified, a “*” sign is displayed next to the element in the **Type** column. The “*” sign is also displayed in the **Type** column when a report is generated.
Managing Elements and Analyzing Links

The application allows you to add and delete elements. Adding an element does not modify the link but it automatically adds an identification number at the location of the insertion.

You can also analyze the link after you make changes to a specific link.

Adding Elements

The iOLM application allows you to add elements on a link by selecting any element or fiber section. However, you cannot add an element after the last element on a link.

Note: You can select a section only if the Fiber section option is enabled in the User Preferences window. See Displaying or Hiding Fiber Sections on page 138 for details.

Note: As soon as you add an element manually, the “*” sign is displayed in the Type column in the Elements table.

When you add a new element on a link to an existing element or group of elements, the loss and reflectance values are set to “---” and the pass/fail threshold is not applied to the newly added element. Accordingly the status for the new element is reflected as unknown. The global pass/fail status can be affected after adding an element on an existing element. See Global Pass/Fail Status on page 174 for details. The added elements are taken into account to determine the pass/fail status of a group of elements.

Note: You cannot insert elements on the links that result from a multifiber acquisition sequence with the MPO switch.
To add an element:

1. Open an iOLM file.

2. Select an existing element in the link composition where you want to add the new element.

 OR

 Select an element from the Elements tab.

3. Tap and hold on the element to view the contextual menu and select Add Element.
4. In the **New Element** dialog box, proceed as follows:

 4a. Select the location where you want to add the new element.

 4b. Select the type of the new element.

![New Element dialog box]

Note: The custom element types appear in the **Type** list. If you have custom elements using your own images, they will also appear in the list. See Defining the Link for Your Test on page 92 for details.

Note: The 2:N splitter and custom elements are displayed in the element type list if they are present in the selected iOLM files.

 4c. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.
To add an element on a fiber section:

1. Open an iOLM file.

2. Select an existing fiber section in the link composition where you want to add the new element.

 OR

 Select the section from the Elements tab.

3. Tap and hold on the fiber section to view the contextual menu and select Add Element.
4. In the **New Element** dialog box, proceed as follows:

4a. Enter the position that better suit your needs. To change the distance units, see *Selecting the Distance Units* on page 139.

4b. Select the type of the new element.

![New Element dialog box](image)

Note: The custom element types appear in the **Type** list. If you have custom elements using your own images, they will also appear in the list. See *Defining the Link for Your Test* on page 92 for details.

Note: The 2:N splitter and custom elements are displayed in the element type list if they are present in the selected iOLM files.

4c. Tap **OK** to confirm your changes and close the window. Tap **Cancel** to ignore your changes and close the window.
Deleting Elements

The application allows you to manually delete added elements.

Note: You cannot delete elements on the link of a loopback measurement for the original measurement, but you can delete added elements when working with the split measurements.

To delete an element:

1. Open an iOLM file.

2. In the link composition, select the element you want to delete.
 OR
 Select the element you want to delete from the **Elements** tab.

3. Tap and hold on the element to view the contextual menu and select **Delete Element**.

4. When the application prompts you, select **Yes** to delete the element or **No** to cancel your choice.
Analyzing and Managing Results
Managing Elements and Analyzing Links

Analyzing Links

The application allows you to reanalyze measurements from the Link View or Elements tabs. When you reanalyze a link, it regenerates all the elements from the acquired measurement and resets the link start and link end values. Once a measurement is reanalyzed, any element related to the link composition, values, and characteristics, as well as the global pass/fail status is refreshed. All the elements added manually are removed from the link.

Note: You cannot analyze elements on the link of a loopback measurement (either original measurement or split measurements).

To analyze the link:

1. Open an iOLM file.

2. From the Link View or Elements tab, tap and hold to view the contextual menu and select Analyze Link.

3. When the application prompts you, select Yes to analyze the link or No to cancel your choice.
Viewing .SOR Traces in the OTDR Viewer

The IADV software option enables you to view acquisitions taken in the iOLM application directly in the OTDR Viewer.

When the .sor trace is displayed in the OTDR Viewer, you can navigate between wavelengths using the previous and next buttons. You can visualize, in turn, the .sor traces taken for each wavelength and navigate through the events or sections directly on the graph or in the event table. However, you cannot delete, change or edit an event. You cannot reanalyze an acquisition either.

The zoom controls are available if you want to view specific portion of the acquisition.

By default, the OTDR Viewer tries to match the wavelengths with those used in the iOLM application.

The OTDR Viewer will use the same distance units as the ones used in the iOLM application.

To view .sor traces in the OTDR Viewer:

1. With the iOLM application, perform an acquisition or open an iOLM file.
2. In the **Elements** tab, select an element or a fiber section.
3. Tap the button.

In the OTDR Viewer, you can navigate through the events or sections directly on the graph or in the event table.
Viewing Measurement Information

You can find information about a measurement, in the application, such as the file name, the acquisition date, the acquisition status, and the test configuration used.

To view measurement information:

From the main window, tap **Info**.

Note: *If the file autonaming is not configured, the file name will be “---”.*

See Naming Trace Files Automatically on page 32 for details.
Viewing Multifiber Results

As soon as you start a multifiber acquisition sequence, a summary with the global pass/fail status for the entire MPO cable is displayed. The results are displayed as the acquisition progresses. Detailed information is shown for each fiber as well.

The summary is not displayed when you open a new file or if an acquisition sequence is started and the externally controlled MPO optical switch is not connected to the unit.

After an acquisition sequence is completed or interrupted, you can select a specific measurement and view the results.

When the results are displayed, you may noticed that all 12 fibers of an MPO test cable do not have exactly the same length. This may be explained by the type of connector used. APC fiber ends tend to be less reflective, compared to the UPC fiber ends, and the position accuracy is also different between the two fiber ends. The distance reliability will vary depending on the Optimode chosen and the OTDR unit used. For exemple, using an FTB-720C module with the Fast Short Link mode will give the worst results and an FTB-750C module used with the Short Link Close Events mode will give the best results.
Sometimes, the APC MPO connections cannot be detected, as no loss and no reflectance are noticeable. Also, if you use the SLCE and FSL Optimodes, when no reflectance is found on an element, the latter will be converted into a connector instead of a splice.

When an MPO switch is connected, the application manages the fibers of the cable as individual fibers with their own elements. No post-treatment is performed to align elements detected on all fibers, or to add elements that may not have been detected on some of the fibers.

You can view the predefined certification standards applied to each fiber and their corresponding pass or fail status by tapping on the status icon at the end of the row.

You can set your unit to generate a report automatically after each sequence. For more information, see *Activating the Automated Report Creation* on page 135.
Managing Files

Managing your files can be done using the shortcut buttons, or the File menu.

Opening Files

You can open files directly from the application to view them.

To open a file:
1. From the main window, tap the button.
2. Select the file you want to open and tap Open.

OR

From the Main Menu, tap File, then Open.
Saving Files

You can save the files manually for future reference. If you want to export your files in Bellcore format automatically each time you save a measurement, see *Saving Files in Bellcore Format* on page 132 for details.

Note: If an OTDR Bellcore (.sor) file already exists on disk, a number in parenthesis will be automatically incremented at the end of the file name to avoid unwanted overwrite.

To save a file:

From the main window, tap the button.

OR

From the **Main Menu**, tap **File**, then **Save**.
To save a file under a different name or location:

1. From the Main Menu, tap File, then Save As.

2. Select the location where you will store your file as needed.

3. Change the name of the file as needed.

4. Tap Save.
Exporting Files to the Bellcore Format

You can export an OTDR Bellcore file to the disk manually. You can also decide to export files automatically to the Bellcore format each time an iOLM measurement is saved. See *Saving Files in Bellcore Format* on page 132 for details.

If multiple wavelengths are present in the iOLM measurement, a Bellcore (.sor) file is generated for each wavelength.

Note: When a bidirectional measurement is loaded in memory, the Export button is disabled.

To export a file manually to the Bellcore format:

1. From the Main Menu, tap File, then Export.

 ![Exporting Files to the Bellcore Format](image)

2. Select the location where you will store your file as needed.

3. Change the name of the file as needed.

4. Tap Save.

Note: When you attempt to generate the .sor file and that the iOLM measurement does not contain the necessary intermediate OTDR measurements, you are notified that the file was not generated, and the reason why. If you interrupt the generation of the .sor file, you are also notified that the file was not generated.
Generating a Report

You can have reports generated for the iOLM, the Power Meter or the iOLM and Power Meter results combined.

You can customize the contents of your report. See Customizing Reports on page 134 for details. You can also set the application to generate a report each time a measurement is saved. See Activating the Automated Report Creation on page 135 for details.

Note: In Internet Explorer, you have to enable the Print Background Colors and Images option from File > Page Setup to print the report properly.

To generate a report:
1. From the main window, tap the button. OR
 From the Main Menu, tap File, then Report.

2. Select the location where you will store your file as needed.
3. Change the name of the file as needed.
4. Tap Save.
15 Maintenance

To help ensure long, trouble-free operation:

➤ Always inspect fiber-optic connectors before using them and clean them if necessary.

➤ Keep the unit free of dust.

➤ Clean the unit casing and front panel with a cloth slightly dampened with water.

➤ Store unit at room temperature in a clean and dry area. Keep the unit out of direct sunlight.

➤ Avoid high humidity or significant temperature fluctuations.

➤ Avoid unnecessary shocks and vibrations.

➤ If any liquids are spilled on or into the unit, turn off the power immediately, disconnect from any external power source, remove the batteries and let the unit dry completely.

WARNING

The use of controls, adjustments and procedures, namely for operation and maintenance, other than those specified herein may result in hazardous radiation exposure or impair the protection provided by this unit.
Cleaning EUI Connectors

Regular cleaning of EUI connectors will help maintain optimum performance. There is no need to disassemble the unit.

IMPORTANT
If any damage occurs to internal connectors, the module casing will have to be opened and a new calibration will be required.

WARNING
Looking into the optical connector while the light source is active WILL result in permanent eye damage. EXFO strongly recommends to TURN OFF the unit before proceeding with the cleaning procedure.

To clean EUI connectors:
1. Remove the EUI from the instrument to expose the connector baseplate and ferrule.

 ![Diagram of connector removal](image)

2. Moist a 2.5 mm cleaning tip with one drop of optical-grade liquid cleaner.
3. Slowly insert the cleaning tip into the EUI adapter until it comes out on the other side (a slow clockwise rotating movement may help).

4. Gently turn the cleaning tip one full turn, then continue to turn as you withdraw it.

5. Repeat steps 3 to 4 with a dry cleaning tip.

Note: Make sure you don't touch the soft end of the cleaning tip.

6. Clean the ferrule in the connector port as follows:

 6a. Deposit one drop of optical-grade liquid cleaner on a lint-free wiping cloth.

 6b. Gently wipe the connector and ferrule.

 6c. With a dry lint-free wiping cloth, gently wipe the same surfaces to ensure that the connector and ferrule are perfectly dry.

 6d. Verify connector surface with a fiber inspection probe (for example, EXFO’s FIP).

7. Put the EUI back onto the instrument (push and turn clockwise).

8. Throw out cleaning tips and wiping cloths after one use.
Recalibrating the Unit

EXFO manufacturing and service center calibrations are based on the ISO/IEC 17025 standard (*General Requirements for the Competence of Testing and Calibration Laboratories*). This standard states that calibration documents must not contain a calibration interval and that the user is responsible for determining the re-calibration date according to the actual use of the instrument.

The validity of specifications depends on operating conditions. For example, the calibration validity period can be longer or shorter depending on the intensity of use, environmental conditions and unit maintenance, as well as the specific requirements for your application. All of these elements must be taken into consideration when determining the appropriate calibration interval of this particular EXFO unit.

Under normal use, the recommended interval for your intelligent Optical Link Mapper is: one year.

For newly delivered units, EXFO has determined that the storage of this product for up to six months between calibration and shipment does not affect its performance.
To help you with calibration follow-up, EXFO provides a special calibration label that complies with the ISO/IEC 17025 standard and indicates the unit calibration date and provides space to indicate the due date. Unless you have already established a specific calibration interval based on your own empirical data and requirements, EXFO would recommend that the next calibration date be established according to the following equation:

Next calibration date = Shipping date + Recommended calibration period (one year)

To ensure that your unit conforms to the published specifications, calibration may be carried out at an EXFO service center or, depending on the product, at one of EXFO’s certified service centers. Calibrations at EXFO are performed using standards traceable to national metrology institutes.

Note: You may have purchased a FlexCare plan that covers calibrations. See the Service and Repairs section of this user documentation for more information on how to contact the service centers and to see if your plan qualifies.

Recycling and Disposal

This symbol on the product means that you should recycle or dispose of your product (including electric and electronic accessories) properly, in accordance with local regulations. Do not dispose of it in ordinary garbage receptacles.

For complete recycling/disposal information, visit the EXFO Web site at www.exfo.com/recycle.
16 Troubleshooting

Viewing Online Documentation

An online version of the intelligent Optical Link Mapper user guide is available at all times from the application.

To access online help:
At the bottom of the Main Menu, tap 📀.

Contacting the Technical Support Group

To obtain after-sales service or technical support for this product, contact EXFO at one of the following numbers. The Technical Support Group is available to take your calls from Monday to Friday, 8:00 a.m. to 7:00 p.m. (Eastern Time in North America).

Technical Support Group
400 Godin Avenue Quebec (Quebec) G1M 2K2 CANADA
1 866 683-0155 (USA and Canada) Tel.: 1 418 683-5498
Fax: 1 418 683-9224 support@exfo.com

For detailed information about technical support, and for a list of other worldwide locations, visit the EXFO Web site at www.exfo.com.

If you have comments or suggestions about this user documentation, you can send them to customer.feedback.manual@exfo.com.

To accelerate the process, please have information such as the name and the serial number (see the product identification label), as well as a description of your problem, close at hand.
Viewing Information About Your iOLM

You can view information about your iOLM such as the version number and contact information for technical support in the About window.

To view iOLM information:
From the main window, tap 📜.

Transportation

Maintain a temperature range within specifications when transporting the unit. Transportation damage can occur from improper handling. The following steps are recommended to minimize the possibility of damage:

- Pack the unit in its original packing material when shipping.
- Avoid high humidity or large temperature fluctuations.
- Keep the unit out of direct sunlight.
- Avoid unnecessary shocks and vibrations.
17 Warranty

General Information

EXFO Inc. (EXFO) warrants this equipment against defects in material and workmanship for a period of one year from the date of original shipment. EXFO also warrants that this equipment will meet applicable specifications under normal use.

During the warranty period, EXFO will, at its discretion, repair, replace, or issue credit for any defective product, as well as verify and adjust the product free of charge should the equipment need to be repaired or if the original calibration is erroneous. If the equipment is sent back for verification of calibration during the warranty period and found to meet all published specifications, EXFO will charge standard calibration fees.

IMPORTANT
The warranty can become null and void if:

- unit has been tampered with, repaired, or worked upon by unauthorized individuals or non-EXFO personnel.
- warranty sticker has been removed.
- case screws, other than those specified in this guide, have been removed.
- case has been opened, other than as explained in this guide.
- unit serial number has been altered, erased, or removed.
- unit has been misused, neglected, or damaged by accident.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL EXFO BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
Liability

EXFO shall not be liable for damages resulting from the use of the product, nor shall be responsible for any failure in the performance of other items to which the product is connected or the operation of any system of which the product may be a part.

EXFO shall not be liable for damages resulting from improper usage or unauthorized modification of the product, its accompanying accessories and software.

Exclusions

EXFO reserves the right to make changes in the design or construction of any of its products at any time without incurring obligation to make any changes whatsoever on units purchased. Accessories, including but not limited to fuses, pilot lamps, batteries and universal interfaces (EUI) used with EXFO products are not covered by this warranty.

This warranty excludes failure resulting from: improper use or installation, normal wear and tear, accident, abuse, neglect, fire, water, lightning or other acts of nature, causes external to the product or other factors beyond the control of EXFO.

IMPORTANT

In the case of products equipped with optical connectors, EXFO will charge a fee for replacing connectors that were damaged due to misuse or bad cleaning.

Certification

EXFO certifies that this equipment met its published specifications at the time of shipment from the factory.
Service and Repairs

EXFO commits to providing product service and repair for five years following the date of purchase.

To send any equipment for service or repair:

1. Call one of EXFO’s authorized service centers (see EXFO Service Centers Worldwide on page 208). Support personnel will determine if the equipment requires service, repair, or calibration.

2. If equipment must be returned to EXFO or an authorized service center, support personnel will issue a Return Merchandise Authorization (RMA) number and provide an address for return.

3. If possible, back up your data before sending the unit for repair.

4. Pack the equipment in its original shipping material. Be sure to include a statement or report fully detailing the defect and the conditions under which it was observed.

5. Return the equipment, prepaid, to the address given to you by support personnel. Be sure to write the RMA number on the shipping slip. EXFO will refuse and return any package that does not bear an RMA number.

Note: A test setup fee will apply to any returned unit that, after test, is found to meet the applicable specifications.

After repair, the equipment will be returned with a repair report. If the equipment is not under warranty, you will be invoiced for the cost appearing on this report. EXFO will pay return-to-customer shipping costs for equipment under warranty. Shipping insurance is at your expense.

Routine recalibration is not included in any of the warranty plans. Since calibrations/verifications are not covered by the basic or extended warranties, you may elect to purchase FlexCare Calibration/Verification Packages for a definite period of time. Contact an authorized service center (see EXFO Service Centers Worldwide on page 208).
EXFO Service Centers Worldwide

If your product requires servicing, contact your nearest authorized service center.

EXFO Headquarters Service Center
400 Godin Avenue Quebec (Quebec) G1M 2K2 CANADA
1 866 683-0155 (USA and Canada) Tel.: 1 418 683-5498
Fax: 1 418 683-9224 support@exfo.com

EXFO Europe Service Center
Winchester House, School Lane Chandlers Ford, Hampshire S053 4DG ENGLAND
Tel.: +44 2380 246800 Fax: +44 2380 246801 support.europe@exfo.com

EXFO Telecom Equipment (Shenzhen) Ltd.
3rd Floor, Building C, FuNing Hi-Tech Industrial Park, No. 71-3, Xintian Avenue, Fuhai, Bao’An District, Shenzhen, China, 518103
Tel: +86 (755) 2955 3100 Fax: +86 (755) 2955 3101 support.asia@exfo.com

To view EXFO's network of partner-operated Certified Service Centers nearest you, please consult EXFO's corporate website for the complete list of service partners:
Index

--- .. 180, 188
* .. 179, 180
... 33, 37
< ... 171
> ... 176

1:? splitter ratio 98, 99
1:N splitter .. 95
2:N splitter ... 95, 99, 164, 167, 175, 182, 184

acquiring traces
 sequentially with a CWDM module 75
 sequentially with a DWDM module 65
acquisition
 automated sequence 55, 56
 multiple wavelengths 6, 171
 progress bar ... 26
 real-time mode 128
 single wavelength 6
 stopped .. 127
 time selection 87, 90
 wavelength displayed 26
activating
 automated acquisition sequence 55, 56
 automated report creation 135
 automated storage of the files 140
 cumulative loss 54
 real-time mode 128
adding
 custom elements 101
 elements on a link 180, 181
 elements on fiber sections 183
 favorite channels 62, 72
 after-sales service 203
analyzing links 180, 186
APC connectors 10, 189
application, certification standards 105
attenuation, high values 80
automated
 acquisition sequence 55, 56
 report creation 135
 storage of the files 140
autonaming ... 34, 188
backscatter
 coefficients ... 11
 values ... 95, 103
basic element types, icons 96
batch post-processing 7
beginning
 of the link ... 162, 165, 170, 177
 of the loop .. 165
Bellcore (.sor) format 55, 65, 75, 131, 132
 192, 194
bidirectional
 loopback results 172
 selecting option 48

cabling standards 105
calculating link loss budget 106
calibration process 53
cautions
 of personal hazard 14
 of product hazard 14
certification standards
 predefined ... 190
 selection ... 86, 105
Index

changing
default name ... 32
distance units 139
test configuration properties 87
channel
filter selection .. 70
spacing selection 60
wavelength selection 61, 71
cleaning
EUI connectors 198
fiber ends .. 29
front panel .. 197
colored background 162
configuration
file name selected.................................. 26
name ... 86
configuring
automatic file naming 34
in loopback mode.................................. 43
in standard mode 39
iOLM.. 38
connecting a switch 27, 49
connector
A ... 10, 54, 162, 165, 170, 177
APC .. 10, 189
B 11, 54, 162, 165, 170, 177, 180
loss .. 8, 10
MPO .. 28
on link ... 167
UPC .. 189
connectors, cleaning 198
conventions, safety 14
core size .. 8, 95, 103
coupler ... 55, 168, 174
cumulative loss 54, 168, 177
custom configurations
creating .. 85
deleting .. 119
duplicating ... 85
editing ... 114
exporting ... 117
importing ... 115
selecting ... 83, 84
custom elements, creating 96, 101
customer service .. 207
customizing
icon ... 96
power meter thresholds values 113, 147
reports ... 134
time values ... 87, 90
CWDM
adding favorite channels 72
channel filter selection 70
channel selection 71
dark fiber ... 80
definition ... 1, 69
displaying favorite channels 74
dynamic range 80
electronic noise 80
live-fiber testing 80
macrobend detection 77
main features .. 69
measurement mode 149
mux/demux channels.......................... 80
removing favorite channels 73
residual light 80

dark fiber ... 67, 80
deaactivating
acquisition sequence......................... 55, 56
automated storage of the files............. 140
cumulative loss 54
real-time mode 130
decrementing name 32
default
folder ... 131, 132, 135
icon ... 96
defining
link ... 86, 92, 97
splitter ratio .. 95
definition
 CWDM ... 1
 DWDM ... 1
 standard iOLM .. 1
deleting
 custom elements .. 102
 elements on a link 185
 test configurations 119
delta loss value .. 77
detecting macrobends, CWDM module 77
diagnostics icon ... 143, 162, 164
direction appended to file name 132
disabling
 automated acquisition sequence 55, 56
 automated storage of the files 140
 cumulative loss .. 54
 sound notifications 137
displaying
 favorite channels 64, 74
 fiber sections .. 138
distance
 between elements .. 162
 units ... 139, 165, 184
duplicating test configurations 85
DWDM
 adding favorite channels 62
 channel selection 61
 channel spacing selection 60
 dark fiber ... 67
 definition ... 1, 59
 displaying favorite channels 64
 dynamic range .. 67
 electronic noise .. 67
 live-fiber testing 67
 main features .. 59
 mux/demux channels 67
 removing favorite channels 63
 residual light .. 67
dynamic
 loss budget .. 109, 110
 range .. 53, 67, 80, 166
ingelligent Optical Link Mapper

E
 editing
 custom elements 101
 element types ... 178
 macrobend threshold value 79, 96, 104
 pass/fail thresholds 86
 power meter thresholds 86
 test configurations 114
 EF-compliant device 8
electrical safety information 24
 electronic noise .. 67, 80
element
 2:N splitter .. 167
 connector ... 167
 coupler ... 168, 174
 fail icon ... 165
 fault .. 168
 identification number 164, 170, 176, 180
 macrobend .. 166
 out of range .. 166
 pass icon ... 164
 position .. 164
 selected ... 162, 164
 splice ... 167
 splitter ... 166
 switch ... 167
types, edition ... 178
Elements tab ... 143, 159, 177, 178, 181, 183
 185, 186
enabling
 2:N splitter .. 99
 automated acquisition sequence 55, 56
 automated storage of the files 140
 cumulative loss .. 54
 sound notifications 137
 encircled flux compliance 8
end
 of the link ... 11, 54, 162, 165, 170, 177
 180
 of the loop .. 165
equipment returns 207
Index

EUI
 baseplate ... 31
 connector adapter 31
 connectors, cleaning 198
 dust cap .. 31
exclusion of the first connector 8
EXFO universal interface. see EUI
expected loss budget of a link 82
exporting
 data to other formats 7
 files in Bellcore format 194
 test configurations 117

 F
factory settings .. 37
fail
 icon .. 164
 status .. 127, 161, 165, 174, 190
fault .. 168
favorite channels
 adding .. 62, 72
 displaying .. 64, 74
 managing ... 62, 72
 removing .. 63, 73
fiber
 core size .. 39, 44, 103
 dark .. 67, 80
 identifying by name 32
 section .. 138, 164, 176, 183
 types .. 92, 93
 types, selection 86
 water peak ... 80
fiber ends, cleaning 29
fiber properties
 backscatter .. 103
 core size ... 103
 IOR ... 103
file
 autonaming ... 188
 exporting in Bellcore format 194
 opening .. 191
 saving .. 192
 saving in Bellcore format 65, 75
 saving in native format 65, 75

 file name
 configuration ... 34
 decrementing 32
 direction appended 132
 incrementing .. 32
 order of appearance 35
 preview ... 32, 35
 separator ... 35
 wavelength value appended 132

 first
 connector, exclusion 8
 connector, value 110
 element on link 10, 54, 162, 165, 170
 177
 fixed loss budget 109
 front panel, cleaning 197
 FTTx/PON measurement mode 149

 G
General tab .. 131, 135, 137, 138, 139
 generating a report
 automated acquisition sequence 55
 automatically 134, 135, 190
 manually .. 134, 195
 global pass/fail status
 displayed .. 6, 127, 160, 174, 180, 186, 189
 for a group of elements 168
 icon .. 176
 graph generation 134
 gray background, element 164
 group
 loss value ... 169
 of elements on link 54, 164, 168, 180
 of elements, identification number 168
 176
 reflectance value 169
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>help icon ... 38, 203</td>
</tr>
<tr>
<td>help. see online user guide</td>
</tr>
<tr>
<td>hiding fiber sections.............................. 138</td>
</tr>
<tr>
<td>high attenuation, values................................ 80</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>icon .. 167</td>
</tr>
<tr>
<td>2:N splitter ... 167</td>
</tr>
<tr>
<td>arrow ... 165</td>
</tr>
<tr>
<td>basic element types 96</td>
</tr>
<tr>
<td>connector .. 167</td>
</tr>
<tr>
<td>coupler .. 168</td>
</tr>
<tr>
<td>customized .. 96</td>
</tr>
<tr>
<td>diagnostics ... 143, 162, 164</td>
</tr>
<tr>
<td>fail ... 164, 165</td>
</tr>
<tr>
<td>fault ... 168</td>
</tr>
<tr>
<td>global pass/fail status 176</td>
</tr>
<tr>
<td>help ... 38</td>
</tr>
<tr>
<td>loop end .. 165</td>
</tr>
<tr>
<td>loop middle ... 165</td>
</tr>
<tr>
<td>loop start ... 165</td>
</tr>
<tr>
<td>macrobend ... 166</td>
</tr>
<tr>
<td>out of range ... 166</td>
</tr>
<tr>
<td>pass ... 164</td>
</tr>
<tr>
<td>splice ... 167</td>
</tr>
<tr>
<td>splitter ... 166</td>
</tr>
<tr>
<td>status .. 190</td>
</tr>
<tr>
<td>switch .. 167</td>
</tr>
<tr>
<td>identification label 203</td>
</tr>
<tr>
<td>identification number 164, 168, 170, 176</td>
</tr>
<tr>
<td>number of channels available 145</td>
</tr>
<tr>
<td>power levels ... 151</td>
</tr>
<tr>
<td>threshold values 145, 146</td>
</tr>
<tr>
<td>input connector of MPO switch 28</td>
</tr>
<tr>
<td>inserting test modules 25</td>
</tr>
<tr>
<td>insertion loss .. 11</td>
</tr>
<tr>
<td>iOLM</td>
</tr>
<tr>
<td>basic theory ... 6</td>
</tr>
<tr>
<td>bidirectional loopback acquisitions 123</td>
</tr>
<tr>
<td>configuration .. 38</td>
</tr>
<tr>
<td>definition ... 1</td>
</tr>
<tr>
<td>equipped with inline power meter 2, 145</td>
</tr>
<tr>
<td>loopback acquisitions 121</td>
</tr>
<tr>
<td>loopback mode configuration 43</td>
</tr>
<tr>
<td>main window .. 25</td>
</tr>
<tr>
<td>P/F Thresholds tab 86, 95, 106, 108</td>
</tr>
<tr>
<td>results .. 159, 170</td>
</tr>
<tr>
<td>selecting a port 39, 44, 50, 56</td>
</tr>
<tr>
<td>selecting wavelengths 40, 45, 50, 57</td>
</tr>
<tr>
<td>standard acquisitions 121, 122</td>
</tr>
<tr>
<td>standard mode configuration 39</td>
</tr>
<tr>
<td>tab ... 38, 154</td>
</tr>
<tr>
<td>testing modes .. 7</td>
</tr>
<tr>
<td>working with the switch 49</td>
</tr>
<tr>
<td>IOR .. 95, 103</td>
</tr>
<tr>
<td>ITU-T grid ... 59, 61, 69, 71</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>junction between fiber sections 167</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>label, identification 203</td>
</tr>
<tr>
<td>last</td>
</tr>
<tr>
<td>connector, value 110</td>
</tr>
<tr>
<td>element on link 11, 54, 162, 165, 170</td>
</tr>
<tr>
<td>177, 180</td>
</tr>
<tr>
<td>launch cable for MPO switch 28</td>
</tr>
<tr>
<td>launch fiber length 43</td>
</tr>
<tr>
<td>on a link .. 9, 10, 12, 41, 46, 51, 54, 162</td>
</tr>
<tr>
<td>165, 170, 177</td>
</tr>
</tbody>
</table>
Index

LED.. 3, 4, 5
length
 of the loop... 165
 of the measured link............................ 162
letter
 A...................... 10, 54, 162, 165, 170, 177
 B.............. 11, 54, 162, 165, 170, 177, 180
link
 elements .. 174
 end values ... 186
 length .. 174
 loss .. 171, 174
 loss budget.. 106
 ORL.. 171, 174
 start values .. 186
link composition
 2:N splitter... 167
 arrow icon ... 165
 connector .. 167
 coupler .. 168, 174
 definition..................................... 159, 162
 diagnostics icon................................... 164
 distance between elements 162
 distance units 165
 element fail icon.................................. 165
 element identification number 164
 element pass icon................................ 164
 element position.................................. 164
 fault... 168
 fiber section.. 164
 group of elements 164, 168
 letter A .. 165, 170
 letter B.. 165, 170
 loop end icon 165
 loop middle icon................................. 165
 loop start icon 165
 macrobend .. 166
 navigation arrow 162, 165
 out of range .. 166
 pass/fail not tested 164
 selected element.................................. 164
 splice ... 167
 splitter .. 166
 splitter ratio 165
 switch .. 167
 Link Definition tab 86, 92, 97
link overview
 beginning of the link 162
 definition 159, 161
 end of the link 162
 length of the measured link 162
 selected element.................................. 162
 visible region.................................... 162
link view
 bidirectional loopback results 172
 global pass/fail status 160, 174
 iOLM results................................. 159, 170
 power meter results..................... 160, 173
 unidirectional loopback results 172
 Link View tab..... 121, 126, 143, 159, 177, 186
 live-fiber testing 67, 80
loop
 end, icon.. 165
 fiber length................................ 9, 43, 165
 fiber on a link................................... 12, 46
 middle, icon... 165
 start, icon... 165
loopback
 all links combined in one report.......... 134
 configuration mode................................ 43
 measurements 12, 122, 165
loss
 at the connector 8
 results .. 176
 thresholds.. 53
 values..................................... 82, 159, 180
loss budget
 dynamic.. 110
 fixed... 109
 of a link.. 82
Index

M
macrobend 77, 79, 96, 104, 166
main features
 CWDM ... 69
 DWDM ... 59
main window
 iOLM ... 25
 status bar 26
maintenance
 EUI connectors 198
 front panel 197
 general information 197
managing elements
 adding on a link 180, 181
 adding on fiber sections 183
 analyzing links 186
 deleting 185
measurement
 assistant 41, 47, 52
 information 188
 of power levels 151, 152
measurement modes, inline power meter
 CWDM ... 149
 FTTx/PON 149
middle of the loop 165
modifying
 acquisition time 87, 90
 backscatter 95, 103
 core size 95, 103
 custom elements 101
 IOR .. 95, 103
 macrobend threshold value 79, 96, 104
 pulse width 87, 90
 test configurations 114
modulation 156
module
 configuration 6
 multimode 93
 singlemode 92
 monitoring fibers in real-time mode 128
 mounting EUI connector adapter 31
MPO
cable ... 189, 190
 connectors 28
 launch cable 28
 switch ... 180
multifiber
 acquisitions 27, 49, 180, 189
 results .. 189
multimode
 measurements 8
 module ... 93
 port ... 3, 103
 wavelengths 103, 178
 multiple-wavelength acquisition 6, 171
 mux/demux channels 67, 80

N
name of the configuration 86
naming measurement automatically 32
navigation arrow 162, 165
noise level 176
number
 of channels for inline power meter 145
 of connections 100, 106
 of digits displayed 33, 37
 of splices 100, 106

O
online user guide 203
opening file 191
OPM
 P/F Thresholds tab 86, 113, 148
 tab .. 150, 152, 153
optical
 cable .. 28
 switch ... 27, 49, 180, 189
 optical radio-frequency port 5
Optimode
definition 7, 83
 selection 86, 90, 189
 test configuration 83
Index

ORL ... 9, 10, 11, 109
OTDR
 Bellcore (.sor) format 55, 131, 132, 192
 graph generation 134
 ports 2, 3, 4, 5, 55
 source 155
 viewing acquisitions 187
out of range
 element 166
 value 38
out of span element 162
output connector of MPO switch ... 28
overall status 172

P
parameters
 acquisition time 87, 90
 pulse width 87, 90
pass
 icon 164
 status 161, 164, 175, 190
pass/fail
 not tested 164
 status 11, 126, 159, 162, 168, 174, 176
 threshold values 86, 147, 172, 174, 180
PDF format for reports 7, 135
PDF. see online user guide
performing
 acquisitions with a power meter 153
 bidirectional loopback acquisitions 123
 live-fiber testing 67, 80
 loopback acquisitions 121
 multifiber measurements 27, 49
 multimode measurements 8
 standard acquisitions 121, 122
port selection 39, 44, 50, 56
power levels
 displayed in Link View tab 151
 measurements 2, 151, 152
power meter
 acquisitions 153
 available on unit 2, 113, 145
 results 160, 173
 threshold values 86, 113, 145, 146, 147
predefined certification standards
 applied to fiber 190
 selection 106
preview of the file name 32, 35
product
 identification label 203
 specifications 13
progress of the acquisition 121
propagation delay 171
Properties tab 86
pulse width selection 87, 90

R
Rayleigh backscatter coefficient 103
real-time mode
 deactivation 130
 performing acquisitions 128
receive fiber
 length 11, 43
 on a link 9, 11, 12, 41, 46, 51, 54, 162
 165, 170, 177, 180
reflectance
 on events 190
 results 176
 values 53, 82, 159, 164, 180
refraction index of the measurement ... 103
regulatory information vii
removing
 favorite channels 63, 73
 test modules 25
report
 automatically sent to default folder 135
 creation 190, 195
 generated automatically, PDF 7, 134, 135
 generated manually 134
Report tab 134
index

residual light ... 67, 80
resolution performance .. 53
results, multifiber .. 189
return merchandise authorization (RMA) 207
reverting to factory settings 37

safety
 caution .. 14
 conventions ... 14
 warning ... 14

saving files
 in Bellcore format .. 65, 75, 132
 in native format 65, 75
 manually ... 192

selected element 162, 164

selecting
 certification standards 86, 105
 channel .. 61, 71
 channel filter 70
 channel spacing 60
 distance units 139
 dynamic loss budget 109
 fiber types ... 86
 measurement mode for inline
 power meter 149
 modulation ... 156
 Optimode ... 90
 port ... 39, 44, 50, 56
 predefined certification standards 106
 split ratio ... 98
 test configuration 83, 84
 wavelength .. 40, 45, 50, 57, 128, 155

separator used in file name 35

sequential
 acquisitions ... 65, 75
 number ... 164
 service and repairs 207
 service centers 208

setting
 acquisition time 87, 90
 automated acquisition sequence 55, 56
 custom power meter threshold values 113
 default storage folder 131
 fiber values automatically 41, 47, 52
 launch cable length automatically 9, 38
 launch cable length manually 9, 38, 41
 loop fiber length manually 9, 38, 46, 48
 macrobend parameters 77
 power meter threshold values 86
 pulse width .. 87, 90
 receive cable length automatically 9, 38
 receive cable length manually 9, 38, 41
 receive cable length manually 42, 46, 48
 test configuration properties 86
 settings, factory 37
 shipping to EXFO 207
 single wavelength acquisitions 6
 singlemode
 live port ... 2, 3, 5, 55, 145, 153
 live/OPM port 3
 module ... 92
 OTDR port 2, 3, 4, 55
 wavelengths 103
 software options 13
 sound notifications 137
 source, modulation 156
 specifications, product 13
 splice .. 100, 167
 split measurement 172
 splitter
 1:N ... 95
 2:N ... 95, 99
 element ... 166, 178
Index

splitter ratio
 1:? ... 98, 99
 on element 95, 98, 165, 166, 179
 stage 1 ... 99
standard
 configuration mode 39
 iOLM definition 1
 measurements 122
 mode ... 7
status
 bar ... 26, 121
 fail .. 127, 161, 165, 174, 190
 global pass/fail 174
 icon ... 190
 of the acquisition 127
 pass .. 161, 164, 175, 190
 unknown .. 127, 161, 164, 175, 180
stopping acquisition 127
storage requirements 197
storing files automatically 140
sub-element in grouped elements 168
Summary tab 159, 189
switch .. 27, 49, 167, 180, 189
symbols, safety .. 14
technical specifications.............................. 13
technical support 203
temperature for storage 197
test configurations
 creating ... 85
 deleting ... 119
 duplicating ... 85
 editing ... 114
 exporting .. 117
 impacts .. 82
 importing ... 115
 Optimode .. 83
 properties .. 86, 87
 selecting ... 83, 84
testing channels sequentially 65, 75
testing modes
 Optimode .. 7
 standard ... 7
theory, iOLM .. 6
threshold values
 macrobend .. 79, 96, 104
 power meter .. 113
total insertion loss 11
transportation requirements 197, 204
type of fiber .. 92, 93
understanding the inline power meter 145
unidirectional loopback results 172
unknown status .. 127, 161, 164, 175, 180
UPC connectors 189
USB
 cable ... 27, 28
 device ... 115, 117, 131
user guide. see online user guide
using
 a switch ... 27, 49
 OTDR as a source 155

T

T

U

understanding the inline power meter 145
unidirectional loopback results 172
unknown status .. 127, 161, 164, 175, 180
UPC connectors 189
USB
 cable ... 27, 28
 device ... 115, 117, 131
user guide. see online user guide
using
 a switch ... 27, 49
 OTDR as a source 155

218

iOLM
V
value
 cumulative loss 54, 168, 177
 first connector 110
 last connector 110
 out of range 38
viewing
 acquisitions in OTDR application 187
 changes on fiber link 128
 diagnostics 143
 measurement information 188
 multifiber results 189
 results in Elements tab 176
 results in Link View tab 159
 visible region 162
W
warranty
 certification 206
 exclusions 206
 general .. 205
 liability ... 206
 null and void 205
wavelength
 available on unit 2
 multimode 103
 selection 40, 45, 50, 57, 128, 155
 singlemode 103
 value appended to file name 132
working
 with the CWDM module 69
 with the DWDM module 59
 with the switch 49
CHINESE REGULATION ON RESTRICTION OF HAZARDOUS SUBSTANCES (RoHS)

中国关于危险物质限制的规定

NAMES AND CONTENTS OF THE TOXIC OR HAZARDOUS SUBSTANCES OR ELEMENTS

CONTAINED IN THIS EXFO PRODUCT

包含在本EXFO产品中的有毒有害物质及元素的名称及含量

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Lead (Pb)</th>
<th>Mercury (Hg)</th>
<th>Cadmium (Cd)</th>
<th>Hexavalent Chromium (Cr(VI))</th>
<th>Polybrominated biphenyls (PBB)</th>
<th>Polybrominated diphenyl ethers (PBDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Electronic and electrical sub-assembly</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Optical sub-assembly a</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Mechanical sub-assembly a</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Note:

注：

This table is prepared in accordance with the provisions of SJ/T 11364.

本表依据SJ/T 11364的规定编制。

O: Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.

O：表示该有害物质在该部件所有均质材料中的含量均在GB/T 26572标准规定的限量要求以下。

X: indicates that said hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572. Due to the limitations in current technologies, parts with the “X” mark cannot eliminate hazardous substances.

X：表示该有害物质至少在该部件的某一致质材料中的含量超出GB/T 26572标准规定的限量要求。标记“X”的部件，皆因技术水平发展水平限制而无法实现有害物质的替代。

a. If applicable.

如果适用。
MARKING REQUIREMENTS
标注要求

<table>
<thead>
<tr>
<th>Product</th>
<th>Environmental protection use period (years)</th>
<th>Logo</th>
</tr>
</thead>
<tbody>
<tr>
<td>This EXFO product</td>
<td>10</td>
<td>![10]</td>
</tr>
<tr>
<td>Battery[^a]</td>
<td>5</td>
<td>![5]</td>
</tr>
</tbody>
</table>

[^a]: If applicable.

如果适用。