FTTx/PON testing reference poster

Testing FTTx and PON networks: best practices and techniques review

Each home, school, business or other type of service provider customer has different requirements when it comes to the upstream and downstream speeds of broadband delivered over fiber-from basic to ultra-fast.

To deliver the right speed to the right customer, both next-generation and legacy PONs are being deployed by overlaying multiple new wavelengths on existing fibers, which becomes challenging for technicians out in the field.

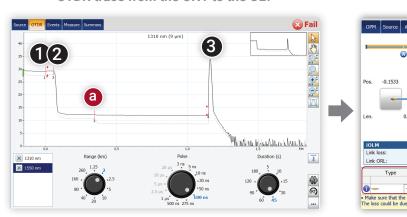
For each cycle of the network life (deployment, activation and troubleshooting) the correct tools and techniques can be different. This poster addresses the latest trends in PON technologies and techniques on how to deploy and maintain these specific fiber optic networks in the most efficient way possible.

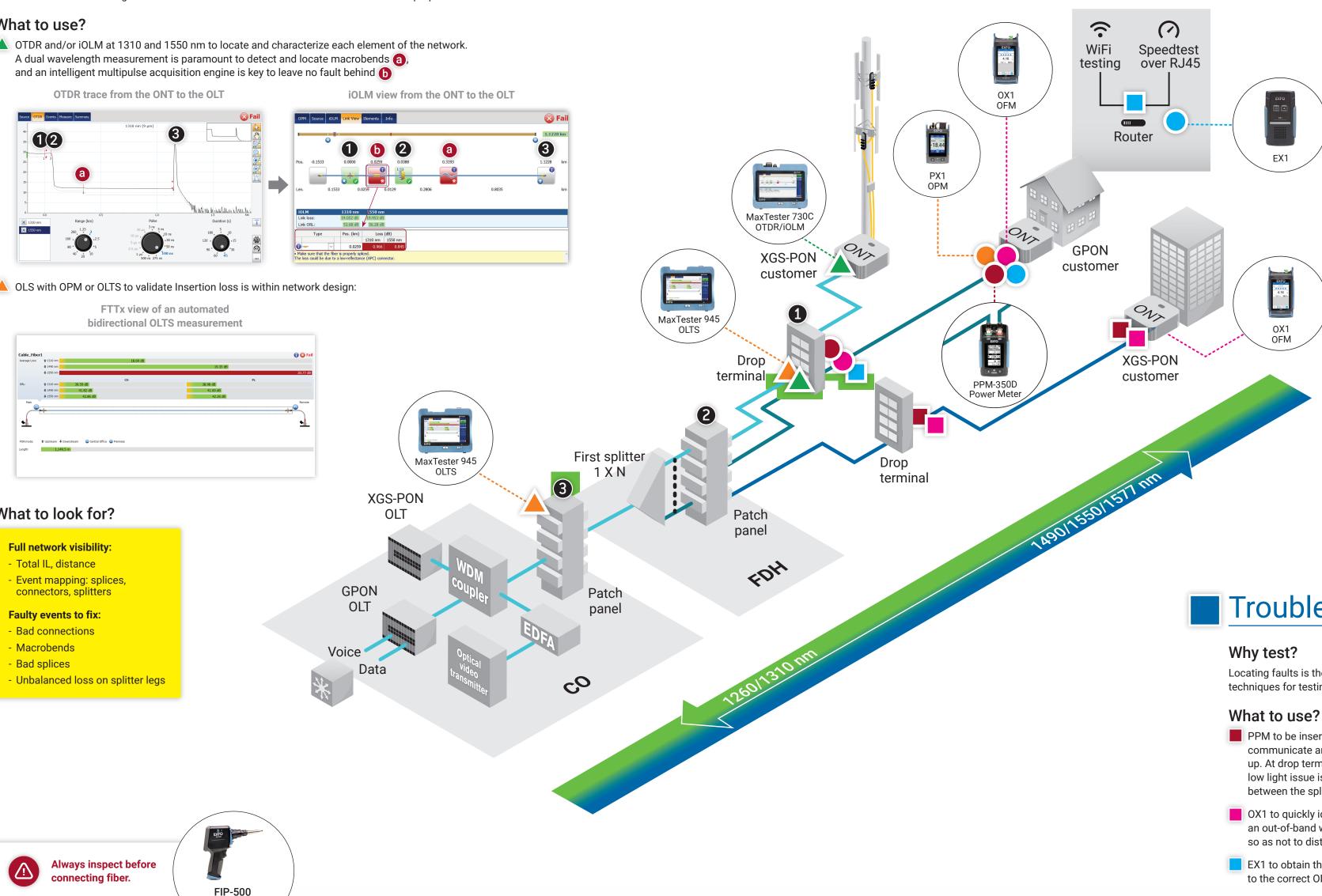
Best practices

Connector inspection

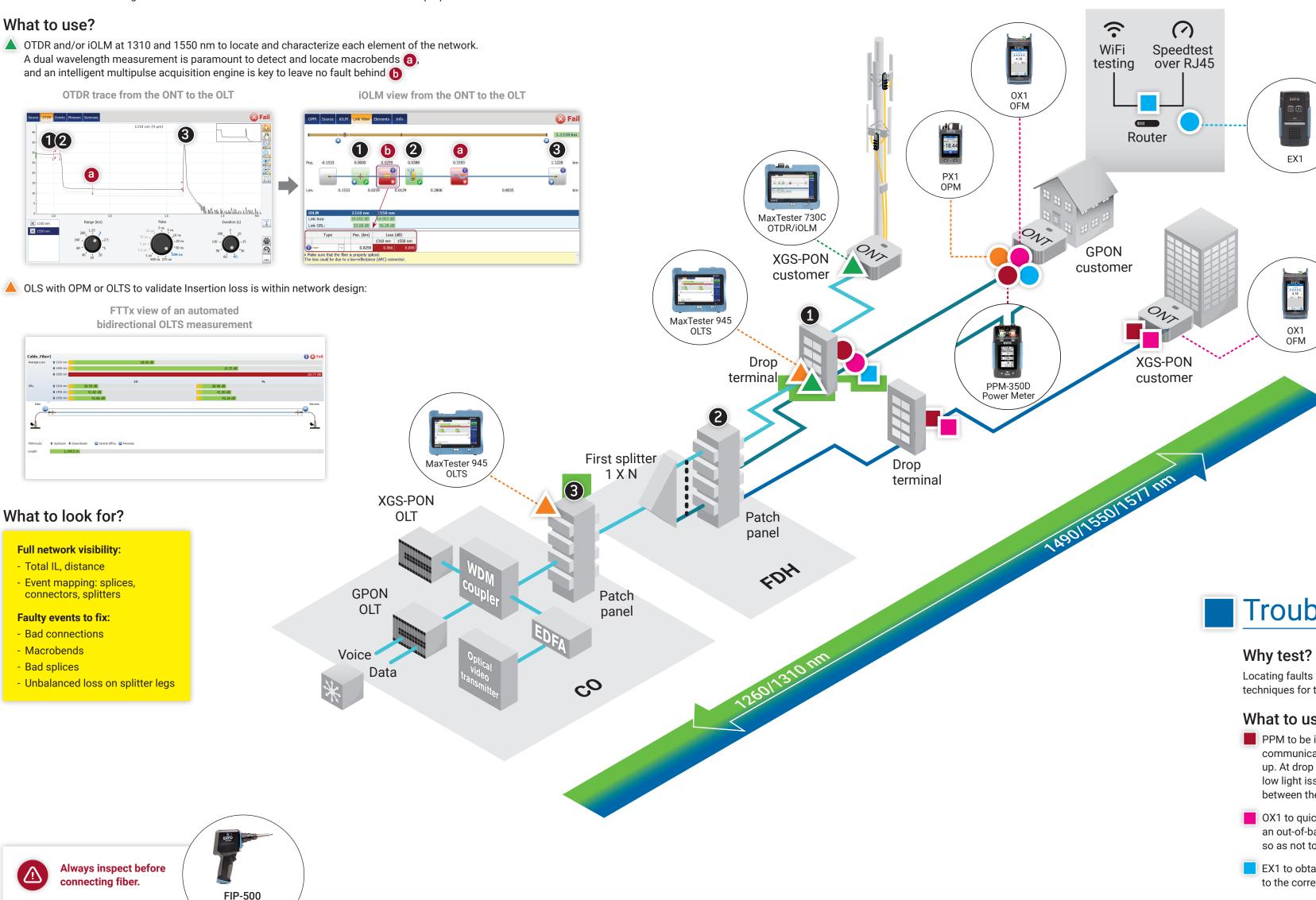
Since faulty or dirty connectors are the number one reason behind network failures, inspecting fiber optic connectors is the vital first step to make sure they are ready to be mated. Only a fully automated FIP will give the technician the correct pass/fail result, hassle free.

Though the length will vary when using a classic OTDR (pulse width used, etc.) a minimum of only 15 m is required when using iOLM for any type of network (P2P, PTMP) thanks to Link-Aware™ technology.

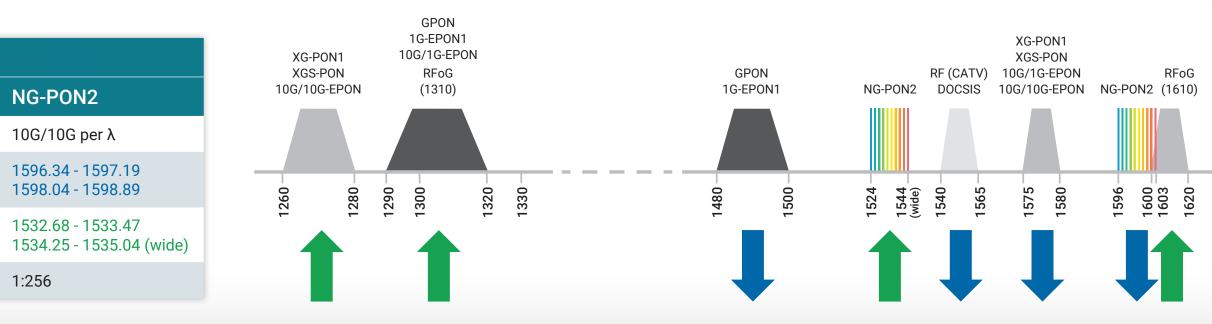

The launch/receive fiber resides between the equipment (OTDR and/or iOLM) and the FUT



Why test?


As per the ITU.G.650.3 standard, any new installation or fiber optic network upgrade should follow testing requirements to make sure the elements are within specifications and the service will be carried error-free. Testing the entire fiber network offers a strong network database for both documentation and maintenance purposes.

What to use?



Trends

Available PON technologies

	Legacy and current			Next generation		
	GPON	1G-EPON1	XG-PON1	XGS-PON	10G/1G-EPON	10G/10G-EPON
PON rate (down/up)	2.5G/1.25G	1.25G/1.25G	10G/2.5G	10G/10G	10G/1.25G	10G/10G
Downstream central λ (nm)	1490 ±10	1490 ±10	1577 +3/-2	1577 +3/-2	1578 +2/-3	1578 +2/-3
Upstream central λ (nm)	1310 ±20	1310 ±50 or 1310 ±20	1270 ±10	1270 ±10	1310 ±50 or 1310 ±20	1270 ±10
Max split ratio	1:128	1:64	1:128	1:256	1:64	1:64

Example of a next generation PON network using GPON, RF video and XGS-PON overlay.

Activate

Why test?

Testing during activation will provide a birth certificate of the link; a final acceptance verdict of the service and a reference for future maintenance.

What to use?

PPM to be inserted through the link to let the OLT and Alternatively, an OPM or MPC may be used to validate ONT communicate and assess the optical power levels expected downstream power value^a. of the downstream/upstream signal at the same time. 📃 LIVE 🖇 🗋 Recommended power measurement method when View stored multiple PON technologies are on same fiber path POWER PASS (e.g., GPON+RF, GPON+XGS-PON) in order to provide -18.44 discrete power by wavelength. ≡ 4:31рм ♠♦ 🚯 🖌 1577 🛃 dBm ⊘Auto-PPM00000 3 Mobile application for the PX1 PON-aware[™] • --- 0-186 software enables identification XGS-PON An EX1 to test the ODN loss, which provides the of technology 7.73 -13.52 ● 7.7 ●-13.5 difference in optical power between the OLT TX and under test RF VIDEO 🛛 🕈 the ONT RX. Emulate the ONT with an EX1 to obtain ♥ 0.3 GPON operational status, ONU ID, ONT Optical RX power, IP address, Speedtest over GPON. dBm REF Built-in screen **OPM** mobile on device application showing

• Optical Explorer (OX1) to validate expected downstream power value and identify causes of failure on the spot. As the service is active, an out-of-band wavelength (1650 nm) on a filtered port must be used so as not to disturb the OLT and to avoid damaging equipment.

PPM-350D results

ONU Serial Number
ONU Password 1234567890
Equipment ID RTY0056
Active SW Version 07.08_1.4.33
Inactive SW Version 07.08_1.4.33
ONU State
ONU ID
PON ID
GPON data

What to look for?

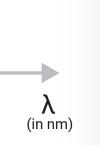
Speedtest[®] by Ookla[®]

- Bad connection at the drop terminal or the ONT
- Bad drop cable - Faulty ONT

Troubleshoot

Locating faults is the only way to quickly and efficiently troubleshoot the link and get the service back up. Since this is performed on live networks, tools and techniques for testing must be adapted.

- PPM to be inserted through the link to let the OLT and ONT communicate and check if both downstream/upstream signals are up. At drop terminal, pass-through measurement will determine if a low light issue is caused by the drop side (failed upstream) or located between the splitter and drop terminal (failed downstream).
- OX1 to quickly identify any cause of failure. As the service is active, an out-of-band wavelength (1650 nm) on a filtered port must be used so as not to disturb the OLT and to avoid damaging equipment.
- EX1 to obtain the network PON ID and validate if a fiber is connected to the correct OLT card and OLT port of the card in the central office.


Alternatively, use a live PON OTDR or iOLM to test pass the splitter up
to central office.

SM port: dark fiber SM live/OPM port: live fiber with in-line PM

What to look for?

-	Macrobends
-	Fiber breaks

Faulty splitter branches Bad connector mating

CATV	Cable television	OLT	Optical line terminal/termination
CO	Central office	OLTS	Optical loss test set
DOCSIS	Data over cable service interface specification	ONT	Optical network terminal/termination
EDFA	Erbium-doped fiber amplifier	OPM	Optical power meter
EPON	Ethernet-based passive optical network	ORL	Optical return loss
FDH	Fiber distribution hub	OTDR	Optical time-domain reflectometer
FIP	Fiber inspection probe	P2P	Point-to-point
FTTx	Fiber-to-the-x, where x = (H)ome, (C)urb, (B)uilding,	PM	Power meter
	(P)remises, etc.	PPM	PON power meter
FUT	Fiber under test	PON	Passive optical network
GPON	Gigabit passive optical network	PON-aware [™]	Automatic PON detection technology
iOLM	intelligent Optical Link Mapper	PTMP	Point-to-multipoint
IPTV	Internet Protocol television	RFoG	Radio frequency over glass
ITU	International Telecommunication Union	RF	Radio frequency
λ	Wavelength	SM	Singlemode
MPC	Micro power checker	SPSB	Soft pulse suppressor bag
NG-PON2	Next-generation passive optical network 2	VoIP	Voice-over-internet protocol
ODN	Optical domain network	WDM	Wavelength-division multiplexing
			5 1- 5
OFM	Optical fiber multimeter	XG-PON	10-gigabit-capable passive optical network
OFM OLS	Optical fiber multimeter Optical light source	XG-PON XGS-PON	10-gigabit-capable passive optical network 10-gigabit-capable symmetric passive optical network

FTTx/PON testing reference poster

