
40G/43G Technical Poster

OTN Frame Structure 1 2 3 4 5 6 7 8 BEI/BIAE 귬 벌 RES TTI BIP-8 — Byte 10 —— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 FAS 🗳 SM GCCO RES 14-15-16-17 3824-3825 OPU Payload (Client Signal) OTU FEC (4 x 256 bytes) 2 RES TCM Act TCM6 TCM5 TCM4 FTFL 3 TCM3 TCM2 TCM1 PM EXP 4 GCC1 GCC2 APS/PCC RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 PSI PM and TCMi (i= 1 to 6) BIP-8 PM1 2 3 4 5 6 7 8 Bei 🚍 Stat Mi 1 2 3 4 5 6 7 8 BEI/BIAE 🚍 STAT

Frame Rates

OTN Interface	Line Rate	Corresponding Service
OTU3	43.018 Gbit/s	OC-768/STM-256 40 GigE
OTU3e1	44.57 Gbit/s	4 x ODU2e (uses 2.5 Gig TS; total of 16)
OTU3e2	44.58 Gbit/s	4 x ODU2e (uses 1.25 Gig (ODU0) TS; total of 32)
OTU4	111.81 Gbit/s	100 GigE

FIF = Fault Identificati

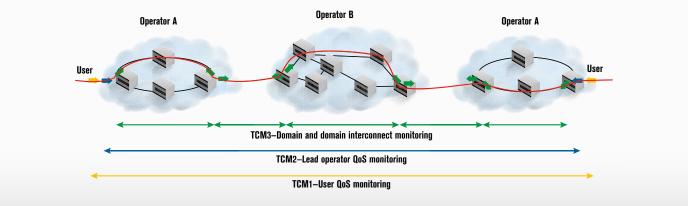
OPU Overhead Bytes

Field	Definition
Payload structure identifier (PSI)	Defined to transport a 256-byte message aligned with MFAS.
Payload type (PT)	Contains the PT identifier that reports the type of payload being carried in the OPU payload to the receiving equipment field; it is currently undefined in the standard.
Multiplex structure identifier (MSI)	Located in the mapping-specific area of the PSI signal (PSI[2] to PSI[17]; it is used to encode the ODU multiplex structure in the OPU.
Justification control (JC)	JC, negative justification opportunity (JJO) and positive justification opportunity (PJO) signals are used in the ODU multiplexing process to make the justification decision in the mapping/demapping process of the client signal.

Payload Type (PT) Defined Values

Payload Type Codes	HEX Values	Payload Type Codes	HEX Values
Experimental mapping	01	FC-400 into ODUflex	0E
Asynchronous CBR mapping	02	FC-800 into ODUflex	OF
Bit synchronous CBR mapping	03	Bit stream with octet timing mapping	10
ATM mapping	04	Bit stream without octet timing mapping	11
GFP mapping	05	ODU multiplex with ODTUjk	20
Virtual concatenated signal	06	ODU multiplex with ODTUk.ts/ ODTUjk	21
1000BASE-X into ODU0	07	Not available	55
FC-1200 into ODU2e	08	Not available	66
GFP mapping into extended OPU2	09	Reserved codes for proprietary use	80-8F
OC-3/STM-1 into ODU0	0A	NULL test signal mapping	FD
OC-12/STM-4 into ODU0	0B	PRBS test signal mapping	FE
FC-100 into ODU0	0C	Not available	FF
FC-200 into ODU1	0D		

• OC-768/STM-256 (AMP) 40 GigE bit transparent (GMP) Other CBR ± 100 ppm (GMP) CBR Client ODU3(L)/OPU3(L) • SONET/SDH • FC-200 ODU1 (L) ODU1 (H) • SONET/SDH • 10 GigE (GFP-F) ODU2 (L) ODU2 (H) ODU2 ODTU23 • 0C-3/0C-12, STM1/STM-4 ODUO (L) GigE bit transparent (GMP) FC-100 DTUG3 PT 21 ODU3(H)/OPU3(H) ODU2e (L) ODU2e ODTU3.9 GMP • 10 GigE bit transparent (BMP) • FC-1200 (GFP-F) ODUflex (L) • Ethernet (GFP-F) • CBR • FC-400, FC-800 CBR ODU1 (L) ODU1 (H) • SONET/SDH PT 20 ODU2 (L) ODU2 (H) • SONET/SDH • 10 GigE (GFP-F)


0DU3–Multiplexing

	Section Overhead								Line Overhea	d			High-Order Path Overhead					Low-Order Path Overhead					
e	A1-A2	B1	J0/Z0	D1-D3	E1	F1	B2	D4-D12	E2	H1-H2	K1-K2	S1/Z1	M0 or M1/Z2	B3	C2	F2	G1	H4	J1	J2	V5	Z6/N2	Z7/K4
	Framing Bytes	Section Parity	Section Trace	Section DCC	Local Orderwire	Section User Channel	Line Parity	Line DCC	Express Orderwire	Payload Pointer	APS	Growth/Sync	REI-L	Path Error Monitoring	Signal Label	Path User Channel	Path Status	Multiframe Indicator	Path Trace	Path Trace Identifier	Signal Label	Tandem Connection Monitor	
3	Pattern identical to SDH. Begins each STS-1.	BIP-8, bit interleaved parity even. Computed from previous STS-n after scrambling. Placed in STS-1 no. 1 only.	Section trace. J0 is section trace in STS-1 no. 1 of STS-n. Z0 is growth for all other STSs of an STS-n.	Section DCC 7 layer OSI stack using CMISE message format. Used for control, monitor, alarm and communicate between section terminating equipment.	Local voice channel defined only for STS-1 no. 1 of an STS-n. Signaling is undefined.	SONET defined only for STS-1	Line BIP-8. Line error monitoring in each STS-1 of an STS-n. Calculated from all line overhead bytes and payload bytes.	Line DCC 7 layer OSI stack using CMISE message format for OAM&P between line terminating equipment. Defined only for STS-1 no. 1 of an STS-n.	STS-1 no. 1 of an STS-n.	H1 and H2 point to the start of the SPE. H3 used for pointer justification. ss bits (5-6) in H1 no. 1 are underfined and H1 no. 3 are set to "00" in STS-3c.	Provides automatic protection switching (APS) signaling between line level entities. Defined only for STS-1 no. 1 of an STS-n.	S1 is used for synchronization status messages (bits 5-8) in STS-1 no. 1 of an STS-n. Z1 is growth for all other STS-1s of an STS-n.	M0 is defined only for OC-1 or STS-1 electrical, bits 5-8 used for REI-L. M1 is defined only for STS-3 or higher, located in STS-1 no. 3, used for REI-L. The other STS-1s are for growth (Z2).	BIP-8 even parity. Entire SPE including VT stuff bytes are calculated.	One byte used to identify the construction of the SPE. Any value other than "0" indicates an equipped condition.	User communication channel between path elements.	One byte used to indicate the status of the far- end terminating equipment. Allows the full-duplex path to be monitored at either end or at any point along the path. Contains REI-P and RDI-P.	Multiframe payload indicator.	64-byte fixed length string to verify connection between path transmitting equipment and path receiving equipment.		This byte provides the same functions for the VT paths as the B3, C2 and G1 bytes provide for STS paths, including error checking, signal labeling and path status indication.	This byte provides support for low-order tandem-connection monitoring.	This byte is used to enable APS signaling and extended RDI (ERDI) capability.
3	Begins each STM-1. Pattern dentical to SONET.	BIP-8 calculated from previous STM-n after scrambling.	Regenerator section trace.	Regenerator section DCC 7 layer OSI stack using CMISE message format. Used for control, monitor, alarm and communicate between section terminating equipment.	Voice orderwire used between section regenerators.	Reserved for user purposes.	Multitest section BIP-24xN. Error monitoring for a multitest section. Calculated over line, overhead and payload bytes.	7 layer OSI stack CMISE message format for OAM&P between NEs and the OS/NMD.	Part of multiplexer section overhead (MSOH). This byte may be accessed at the multiplex section terminating equipment.	H1 and H2 point to the start of the AU, H3 used for pointer justification. ss bits (5-6) in H1 no. 1 are set to "10" and H1 no. 3 are underfined for AU4.	Provides APS signaling between multiplex section elements.		This byte is called M2 in SDH and provides a count for the BIP-24xN errors detected in B2.			User communication channel between path elements.	One byte used to indicate the status of the far- end terminating equipment. Allows the full-duplex path to be monitored at either end or at any point along the path.	Multiframe payload indicator can be payload specific.	First byte in the VC either a 64-byte free format or a 16-byte E.164 format. E.164 is mandatory at international boundaries.	Used to identify lower- order (LO) VCs.	VT path overhead byte.	Allocated for tandem connection monitoring for the VC2, VC-12 and VC-11 level.	Bit 1 is used for multiframe alignment signals and extended signal labels, whereas bit 2 is used for virtual concatenation.
ł	A1 = 11110110 A2 = 00101000 Hex A1 = F6 A2 = 28		SDH usage not currently defined. The E.164 is the likely format.	Considered as one 192 kbit/s message- based channel.	SDH: A-law to μ- law conversion per ITU G.802.	Available for use by the network provider.		Considered as one 576 kbit/s message-based channel.	SDH A-law to µ-law conversion per ITU G.802.	The setting of the ss bits differentiates an STS-3c from an STM-1.				These is compatibility because the byte is duplicated in SDH.			RFI-P is a failure indication derived from RDI-P defect.						

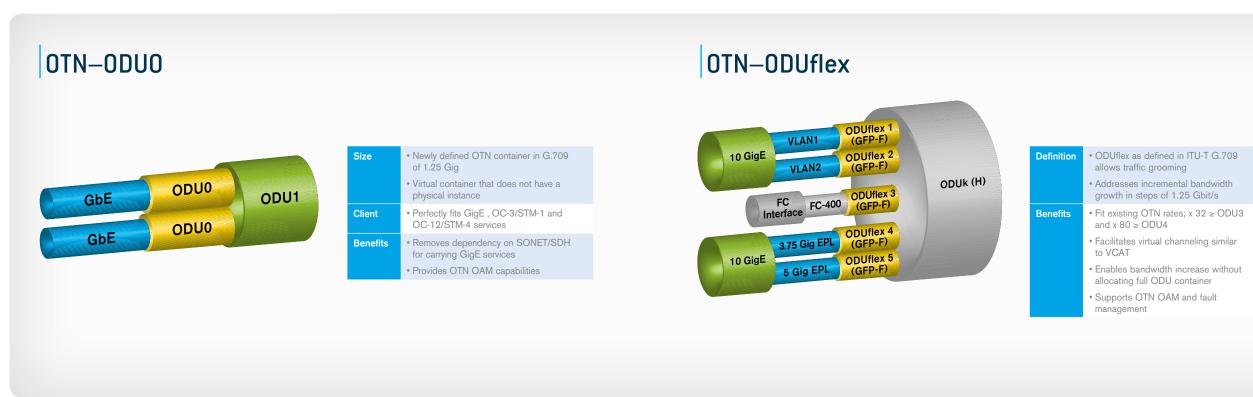
ODU Overhead Bytes

Field	Definition								
Path	PM consists of the following bytes; TTI, BIP-8, E	3EI, BIAE, BDI and IAE.							
Monitoring	Trail trace identifier (TTI)	The 64-byte multiframe TTI signal is similar to the J0 byte in SONET/SDH.							
	Bit interleaved parity (BIP-8)	The ODU PM contains a BIP-8 field that covers the OPU and customer payload of the G.709 frame. The BIP-8 values are inserted in the BIP-8 field of the frame following calculation.							
	Backward defect indication (BDI)	The AIS-forwarded signal in the downstream direction-is sent as a response to a signal fail indication, such as in the FTFL or the incoming ODU-AIS. In the upstream direction, the response to continuity, connectivity and maintenance signals is a backward defect indication (BDI) signal indicated by a bit found in the PM and TCMi. BDI is raised as an alarm when it has been received for five consecutive frames.							
	Backward error indication (BEI) and backward incoming alignment error (BIAE)	The AIS-forwarded signal in the downstream direction-is usually sent as a response to a signal fail indication, such as in the FTFL or the incoming ODU-AIS. In the upstream direction the response to continuity, connectivity and maintenance signals is a BDI signal indicated by a bit found in the PM and TCMi. BDI is raised as an alarm when it has been received for five consecutive frames.							
	STAT	These three bits indicate the presence of maintenance signals (AIS, OCI, TCMi, IAE).							
	Tandem connection monitoring (TCM)	Six TCM sublayers are defined in the ODU overhead. Each TCM sublayer contains TTI, BIP-8. BEI/BIAE, BDI and STAT subfields.							
	Tandem connection monitoring activation/ deactivation (TCM ACT)	One-byte field used for the activation and deactivation of the TCM fields. This field is currently undefined in the standard.							
	Fault type and fault location (FTFL)	Reporting communication channel field that is used to create a message for sending forward and backward path-level fault indications.							
	Experimental (EXP)	This field is not subject to standards and is available for network operator applications.							
	General communication channel 1 and 2 (GCC1/GCC2)	Clear channels used for transmission of information at the ODU layer; similar to the GCC0.							
	Automatic protection switching and protection communication channel (APS/PCC)	This field supports up to eight levels of nested APS/PCC signals, which are associated to a dedicated-connection monitoring level.							
	RES	Reserved bytes that are currently undefined in the standard.							

Tandem Connection Monitoring (TCM)

Field Section mor

	Definition							
ionitoring (SM)	SM consists of the following bytes: TTI, BIP-8, BEI, BIAE, BDI and IAE.							
	Trail trace identifier (TTI)	The 64-byte multiframe TTI signal is similar to the J0 byte in SONET/SDH.						
	Bit-interleaved parity (BIP-8)	The BIP-8 value covers the OPU and client payload of the G.709 frame and its value is inserted in the BIP-8 field of the second frame following calculation.						
	Backward defect indication (BDI)	When an AIS is sent in the downstream direction as a response to a signal fail indication (such as in the FTFL), the upstream direction response to continuity, connectivity and maintenance signals is a backward defect indication (BDI) signal. BDI is raised as an alarm when it has been received for five consecutive frames.						
	Backward error indication (BEI) and backward incoming alignment error (BIAE)	The detection of a frame slip, which can occur at the OTU, generates an alignment error (IAE) in the downstream direction. The three-bit value of "010" in the status (STAT) field indicates IAE. A corresponding BIAE is inserted in the upstream direction by specifying bits "1011" in the BEI/BIAE SM field.						
	STAT	These three bits indicate the presence of maintenance signals (AIS, OCI, TCMi, IAE).						
ommunication (GCC0)	A clear channel used for transmission of information between OTU terminat points.							
Reserved bytes that are currently undefined in the standard.								

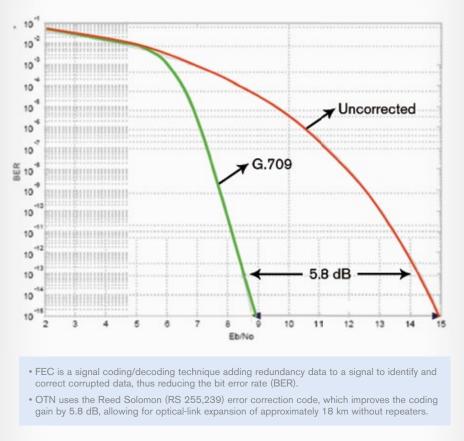

Frame and Frame Alignment Bytes

The	frame	alignme	nt ov	rerhead	is
two	portio	ns: FAS	and	MFAS.	

General co channel 0

RES

Frame alignment signal (FAS)	Frami frame
Multiframe alignment signal (MFAS)	In the alignr incre


OTU Overhead Bytes

is applicable for both the OTUk and ODUk signals and is divided into

ing bytes are used in the transmission systems to determine where es start and end.

ne case of multiframe structure (i.e., TTI and TCM-ACT signals), multiframe nment processing is required using MFAS. The MFAS byte will be emented each OTUk/ODUk from 0 to 256.

Reed Solomon (255,239) FEC Algorithm

Over-Clocked OTU3–OTU3e1/OTU3e2

• Defined in ITU-T G.709 Sup43 Sec9.1

- OTU3e1 supports nominal bit rate of 44.57 Gbit/s \pm 20 ppm
- The OPU3e1 is divided into 16 x 2.5 Gig tributary slots (TSs) interleaved within the OPU3e1 payload area • OTU3e1 is key for asynchronous bit-transparent mapping of 4 x ODU2e signals

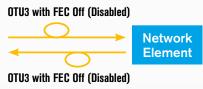
ddresses incremental bandwidth rowth in steps of 1.25 Gbit/s t existing OTN rates; x 32 ≥ ODU3 acilitates virtual channeling similar

nables bandwidth increase without allocating full ODU container upports OTN OAM and fault

OPU3e2 = 41.61 Gbit/s

Defined in ITU-T G.709 Sup43 Sec9.2

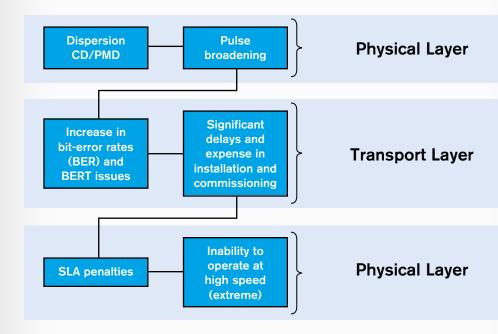
• OTU3e2 supports nominal bit rate of 44.58 Gbit/s \pm 20 ppm


• The OPU3e2 is divided into 32 tributary slots (TS) of approximately 1.25 Gbit/s interleaved within the payload area

OPU3e1 = 41.56 Gbit/s

• OTU3e2 uses generic mapping procedure (GMP) for mapping 4 x ODU2e signals into OPU3e2 payload area

Transparent FEC


EXFO

Line Side Testing

40G/43G TECHNICAL POSTER

The Importance of Testing Chromatic and Polarization-Mode Dispersion

Why Test Dispersion?

Dispersion can affect the entire cycle. Precise measurement of CD and PMD on all the available fiber segments (metro, regional and core networks) differentiates between the bad segments, allowing the highest line-rate transmission on the longest distance possible.

EXFO CORPORATE HEADQUARTERS 400 Godin Avenue Quebec City, Quebec G1M 2K2 CANADA Tel.: +1 418 683-0211 Fax: +1 418 683-2170

EXFO Assessing Next-Gen Networks

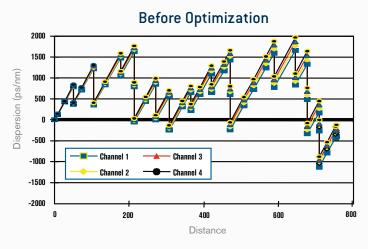
IMS

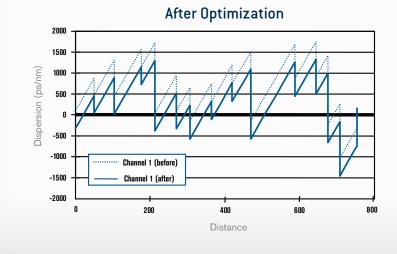
00G

Ethe

EXFO America 3400 Water Parkway, Suite 100 Richardson TX 75080 USA Tel.: +1 972 761-9271 Fax: +1 972 761-9067

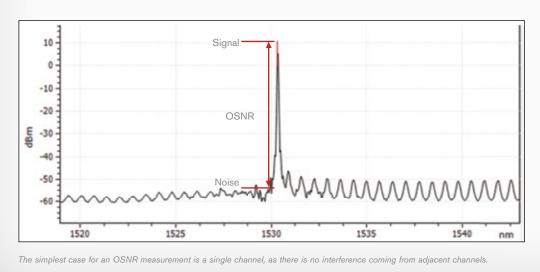
EXFO Asia 100 Beach Road, #22-01/03 Shaw Tower SINGAPORE 189702 Tel.: +65 6333 8241 Fax: +65 6333 8242

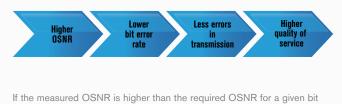

EXFO China 36 North, 3rd Ring Road East, Dongcheng District Room 1207, Tower C, Global Trade Center Beijing 100013 P. R. CHINA Tel.: +86 10 5825 7755 Fax: +86 10 5825 7722


EXFO Europe Omega Enterprise Park, Electron Way Jnandiers Ford, Hampshir Tel.: +44 2380 246810 Fax: +44 2380 246801

EXFO NetHawk Elektroniikkatie 2 FI-90590 Oulu FINLAND Tel.: +358 (0)403 010 300 Fax: +358 (0)8 564 5203

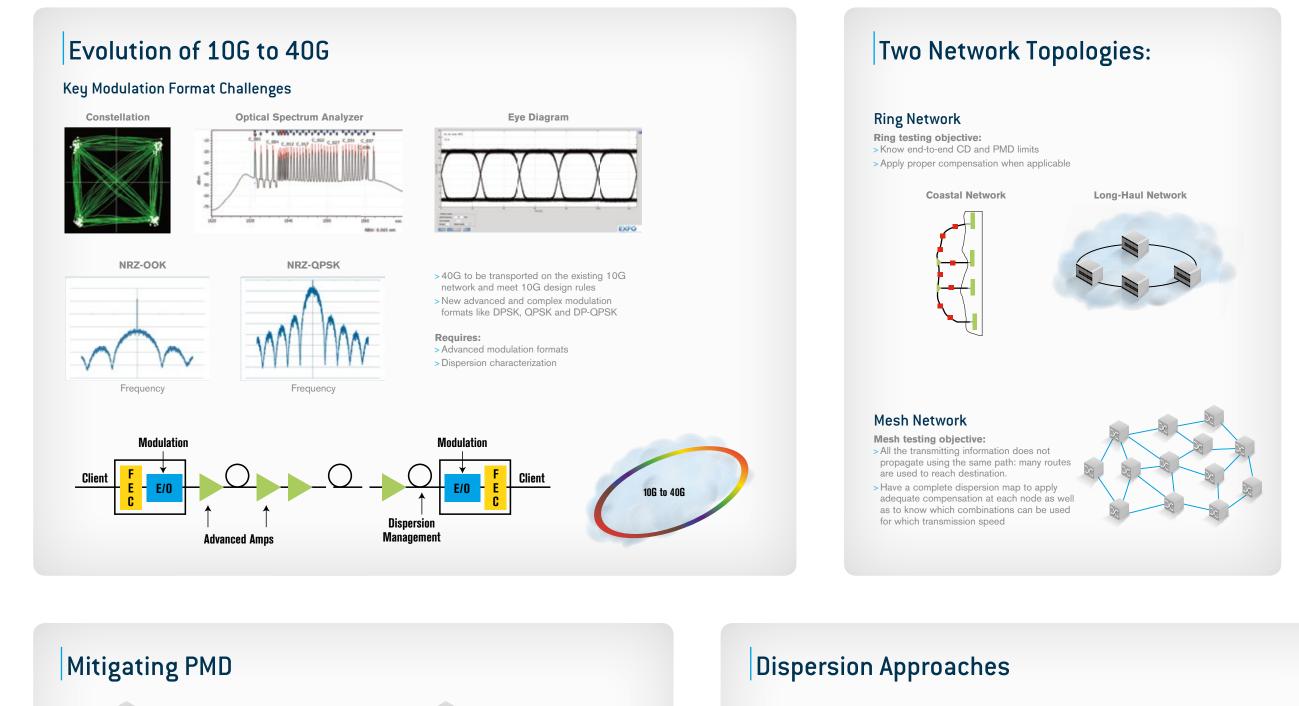
EXFO Service Assurance 270 Billerica Road Chelmsford, MA 01824 USA Tel.: +1 978 367-5600

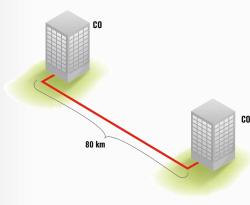

Dispersion Map



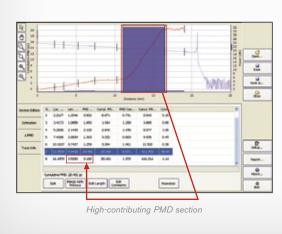
System Commissioning

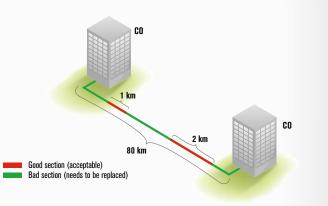
Definition of OSNR


Importance of OSNR

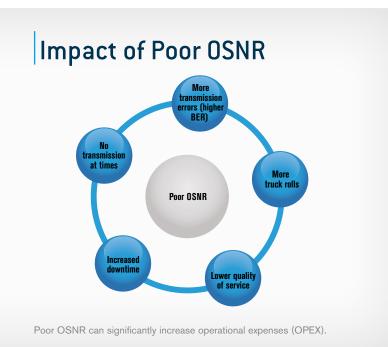


error rate, one can: Increase the bit rate Increase the number of channels (wavelengths) > Increase the distance between amplifiers, thereby reducing CAPEX

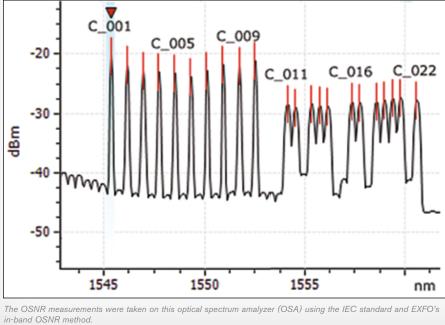

An accurate measurement of OSNR helps exploit the maximum capacity of a link.


Advanced Fiber Characterization

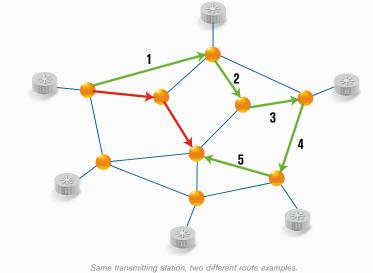
Traditional PMD measurement techniques provide a total link PMD value but do not locate which spans are causing the link to fail the test.



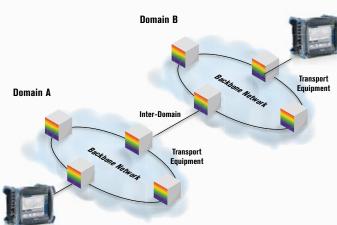
Distributed PMD analysis breaks down the measurement results effectively pinpointing the high-contributing sections of the link.

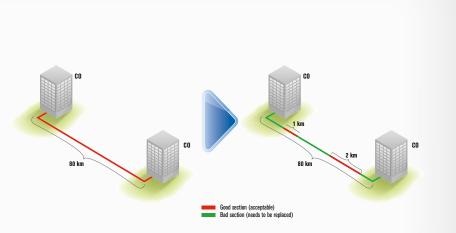

ocates the fiber sections that are the main contributors of the total PMD of a link > Enables to isolate and repair only the worst PMD sections of the fiber cable and allows the cost-effective upgrade of a fiber network

Using a single-ended instrument-a CD and PMD test tool that can characterize a section between two sites without having instruments at both ends-means that many sections can be characterized in a few minutes instead of a few hours from a single location. As a result, an entire network can be characterized greatly reduces truck rolls and OPEX, while increasing speed to deliver new services and reducing time-to-cash.



IEC and In-Band OSNR C_001 C_009 C_005




	e lines indicated in bold show the channels where the IEC approach would have resulted in a significant error. In-band OSNR is an approach to measure the OSNR directly at the channel wavelength at allows for accurate OSNR measurements in ROADM and 40G networks.									
Channel Number	Channel Wavelength (nm)	Traditional IEC OSNR (dB)	EXFO's In-Band OSNR (dB)	Inaccuracy with Traditional IEC Method (dB)	Channel Number	Channel Wavelength (nm)	Traditional IEC OSNR (dB)	EXFO's In-Band OSNR (dB)	Inaccuracy with Traditiona IEC Method (dB)	
7	1550.117	20.82	19.07	1.75	15	1556.151	13.62	19.14	5.52	
8	1550.923	21.42	19.90	1.52	16	1557.352	12.94	17.99	5.05	
9	1551.728	21.48	20.53	0.95	17	1557.750	13.20	17.50	4.30	
10	1552.519	22.26	20.54	1.72	18	1558.580	12.90	18.52	5.62	
11	1554.135	13.33	17.68	4.35	19	1558.984	11.75	17.65	5.90	
12	1554.532	12.70	16.68	3.98	20	1559.392	11.98	17.80	5.82	
13	1555.341	12.79	17.90	5.11	21	1559.791	13.41	18.38	4.97	
14	1555.745	11.75	18.07	6.32	22	1560.608	16.04	20.38	4.34	

Short Links—Long Traveling Distances

Green path example								
Network section	Length (km)	CD Value at 1550 nm (ps/nm)	PMD (ps)					
1	53	890	6.49					
2	37	632	0.39					
3	29	484	8.93					
4	45	765	5.21					
5	42	726	0.88					
Total	206	3497	12.24					

With data rates reaching 40 Gbit/s and beyond, fiber characterization is critical. When adding 40Gbit/s wavelengths to a DWDM route or ring, at that time, it will be nearly impossible to temporarily remove dozens of active wavelengths from service to characterize the optical fiber carrying them. It's important to fully characterize optical fiber links while it's possible: here ,in addition to being highly accurate, these future points can be acquired, faster with high accuracy which together reduces test costs or the even greater cost of adding more fiber.

Distributed PMD analysis reduces CAPEX by revealing the worst segments on a high-PMD route. Replacing a few kilometers of fiber, instead of an entire route, puts it back in service for higher bit-rate services and substantially reduces CAPEX.

Result Differences Using IEC and In-Band OSNR Methods

Assessing **Next-Gen Networks**