
BA-4000-L2

Traffic and Bit Analyzer

Copyright © 2025 EXFO Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, be it electronically, mechanically, or by any other means such as photocopying, recording or otherwise, without the prior written permission of EXFO Inc. (EXFO).

Information provided by EXFO is believed to be accurate and reliable. However, no responsibility is assumed by EXFO for its use nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of EXFO.

EXFO's Commerce And Government Entities (CAGE) code under the North Atlantic Treaty Organization (NATO) is 0L8C3.

The information contained in this publication is subject to change without notice.

Trademarks

EXFO's trademarks have been identified as such. However, the presence or absence of such identification does not affect the legal status of any trademark.

Where applicable, the Bluetooth[®] word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by EXFO Inc. is under license. Where applicable, the MTP[®] mark is a registered trademark of US Conec Ltd. Other third party trademarks and trade names are those of their respective owners.

Units of Measurement

Units of measurement in this publication conform to SI standards and practices.

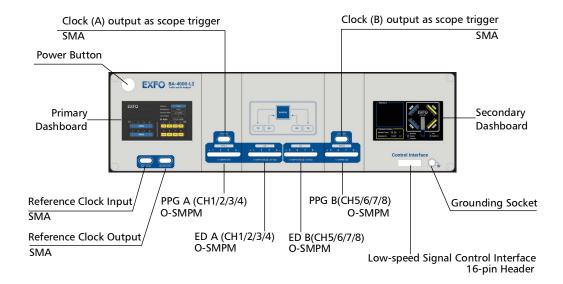
Patents

The exhaustive list of patents is available at EXFO.com/patent.

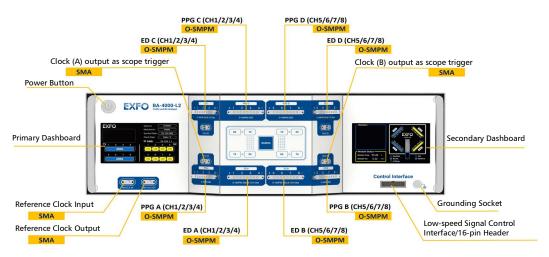
Version number: 2.0.0.1

ii BA-4000-L2

Contents


1	Introduction	1
	Front Panel	1
	Rear Panel	2
	Connection Guide	
	Connection Guide with RCNC	
	Connection Guide with MCB	8
2	General GUI Operation	. 11
	Quick Start	
	Main Control Bar	
	Connecting the BA L2	
	Save/Load Settings	
	Help	
3	1x 800G Mode	10
3	GUI Sections	
	Main Control Bar	
	Main Area - BER Monitor	
	Main Area	
	Sub Control Area	
_		
4	2x 400G Mode	
	GUI Sections	
	Main Control Bar	
	Alarm & Error Area	
	Main Area - BER Monitor	
	Main Area	
	Sub Control Area	47
5	8x 100G Mode	. 51
	GUI Sections	51
	Main Control Bar	
	Alarm & Error Area	
	Main Area	
	Sub Control Area	

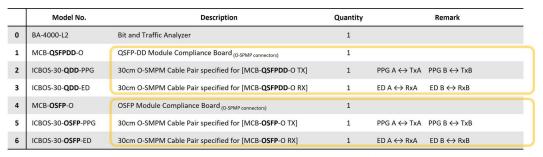
Contents

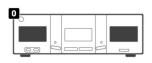

6	Unframed Mode	67
	GUI Sections	
	Main Control Bar	
	Main Area	69
	Sub Control Area	72
In	ndex	73

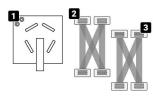
1 Introduction

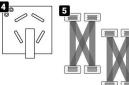
Front Panel

With RCNC Option

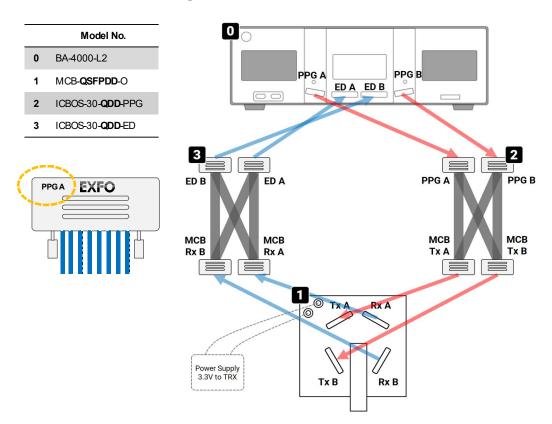



Rear Panel

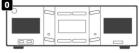



Connection Guide

General Kit List of BA L2



Test Configuration of QSFP-DD TRX

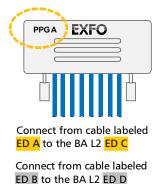

Test Configuration of OSFP TRX

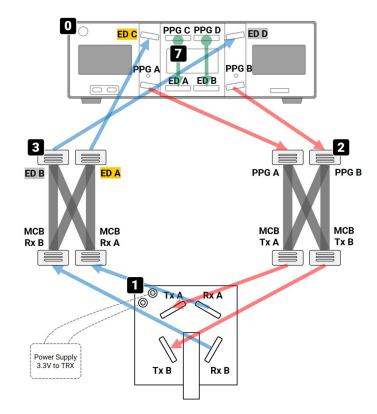
	Model No.	0	
0	BA-4000-L2	T	
4	MCB- OSFP -O		PPG A PPG B
5	ICBOS-30- OSFP -PPG		ED A ED B
6	ICBOS-30- OSFP -ED		
F	PPGA EXFO	ED B ED A MCB RX A Power Supply 3.3V to TRX	PPG A PPG MCB Tx A Rx A Tx B Rx B

Connection Guide with RCNC

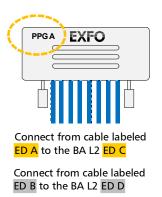
General Kit List of BA L2

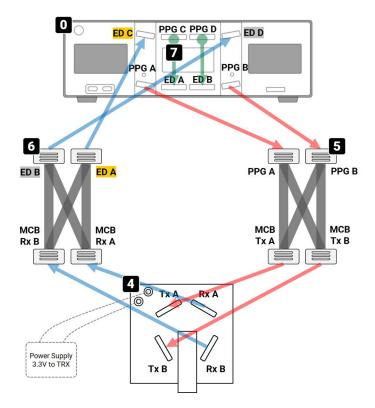
	Model No.	Description	Quantity	Remark
0	BA-4000-L2-RCNC	Bit and Traffic Analyzer with RCNC option	1	
1	MCB-QSFPDD-O	QSFP-DD Module Compliance Board (O-SPMP connectors)	1	
2	ICBOS-30- QDD -PPG	30cm O-SMPM Cable Pair specified for [MCB- QSFPDD -O TX]	1	$PPG\:A \longleftrightarrow TxA PPG\:B \longleftrightarrow TxB$
3	ICBOS-30-QDD-ED	30cm O-SMPM Cable Pair specified for [MCB- QSFPDD -O RX]	1	$ED A \leftrightarrow RxA \qquad ED B \leftrightarrow RxB$
4	MCB- OSFP -O	OSFP Module Compliance Board (O-SPMP connectors)	1	
5	ICBOS-30- OSFP -PPG	30cm O-SMPM Cable Pair specified for [MCB- OSFP -O TX]	1	$PPG\:A \longleftrightarrow TxA PPG\:B \longleftrightarrow TxB$
6	ICBOS-30- OSFP -ED	30cm O-SMPM Cable Pair specified for [MCB- OSFP -O RX]	1	$EDA \leftrightarrow RxA \qquad EDB \leftrightarrow RxB$
7	ICBOS-OS-20	20cm O-SMPM Loopback Cable	2	Standard accessories of RCNC option





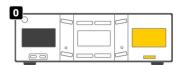
Test Configuration of QSFP-DD TRX

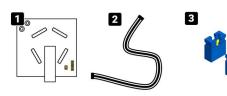

	Model No.		
0	BA-4000-L2-RCNC		
1	MCB- QSFPDD -O		
2	ICBOS-30- QDD -PPG		
3	ICBOS-30-QDD-ED		
7	ICBOS-OS-20 (x2)	ĺ	

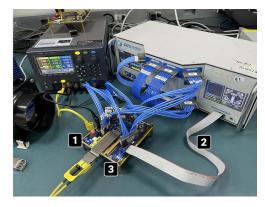


Test Configuration of OSFP TRX

	Model No.		
0	BA-4000-L2-RCNC		
4	MCB- OSFP -O		
5	ICBOS-30- OSFP -PPG		
6	ICBOS-30- OSFP -ED	•	
7	ICBOS-OS-20 (x2)	1	

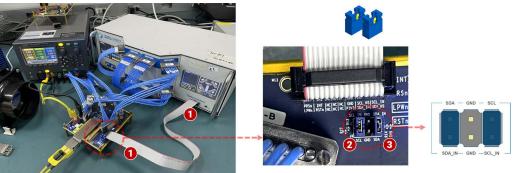





Connection Guide with MCB

List of Control Interfaces

	Model No.	Description	Quantity	Note
0	BA-4000-L2-RCNC	Bit and Traffic Analyzer with RCNC option	1	
1	MCB-OSFP-O	OSFP Module Compliance Board (O-SPMP connectors)	1	
2	N/A	Specific flat flexible cable	1	Standard accessory of BA L2
3	N/A	2.54mm Jumper cap	2	Standard accessory of BA L2 (after Sep. '25)



To connect and configure with the MCB:

- **1.** Connect from [BA L2 Control Interface] to [MCB 16-pin header] by the flat cable.
- **2.** Put one jumper cap on [SCL SCL_IN].

Module Temperature and Voltage

With correct connection and configuration, when the transceiver is on, module temperature and voltage are shown immediately on the 2nd dashboard of the front panel.

If it doesn't work, switch [I2C Mode] from [Default] to [Legacy] at MCB tab of the GUI.

2 General GUI Operation

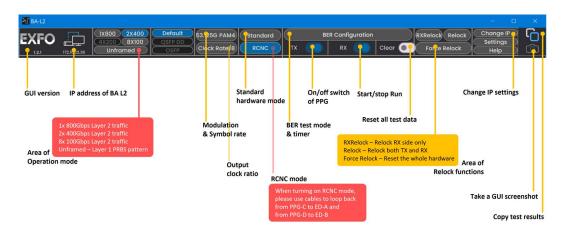
Quick Start

To power on and control with the GUI:

- **1.** Connect the Ethernet cable from the control PC to the RJ45 port on the rear of the BA L2 chassis.
- **2.** Push the power button on the front panel.
- **3.** Wait for initialization. (Initialization is done when the IP address appears on the front-panel monitor)
- **4.** Open the GUI. (The name of the desktop icon is BA-L2.)
- Enter the IP address and click Connect to start controlling the machine.

To set the mode, PPG setting, and view results:

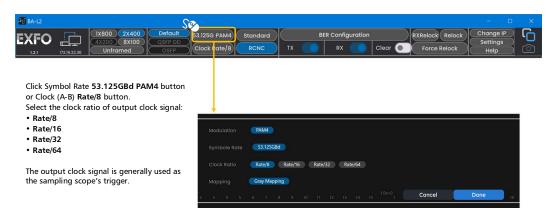
- 1. Select the operation mode.
- **2.** Switch into RCNC hardware mode.
- **3.** Set the PPG amplitude and cursors.
- **4.** Switch functions to get all kinds of results.

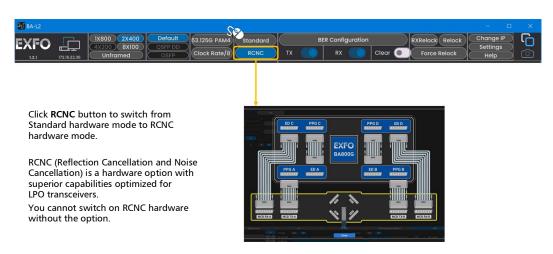


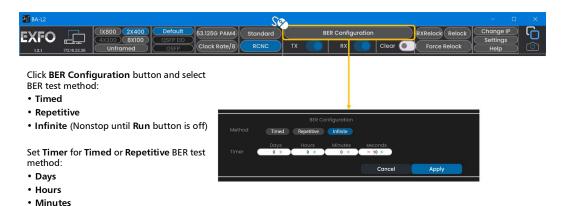
Here are two general settings to test LPO for your reference. Based on these, you can tune your settings.

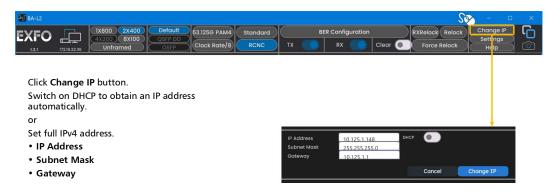

(pre3, pre2, pre1, main, post1, post2, post3, upper eye, lower eye)

- **►** (-4, 12, -20, 500, 20, -10, -6, 3, 3)
- **►** (-4, 12, -20, 500, 20, 0, -6, 3, 3)

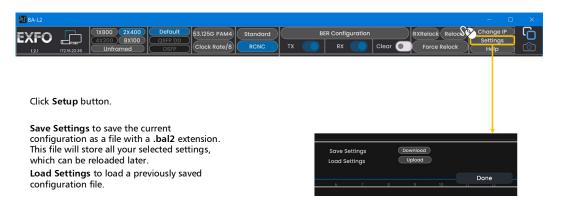

Main Control Bar


Connecting the BA L2


Symbol Rate and Clock Ratio


RCNC Mode

BER Configuration



Changing IP Address Settings

Seconds

Save/Load Settings

Configuration List

The **Save Settings** feature allows you to save the following options:

➤ Selected Mode

Options: 1x800, 2x400, 8x100, Unframed Mode

- ➤ Data Rate
- ➤ TX and RX (Run) Enable/Disable
- **➤** Tap Values

Pre Cursor 3, Pre Cursor 2, Pre Cursor 1, Amplitude, Post Cursor 1, Post Cursor 2, Post Cursor 3, Upper Eye, Lower Eye

➤ Channel-Wise TX/RX Invert Settings

Enable/Disable for each channel

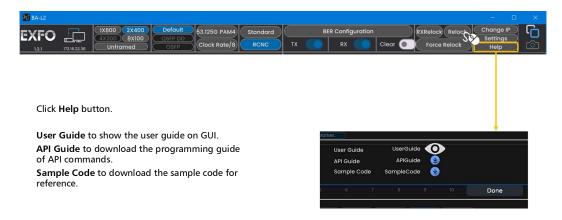
- Traffic Settings
 - ➤ Pattern TX Inversion, RX Inversion

- ➤ Ethernet Frame Fixed Size or EMIX Sequence Length, TX Rate (%)
- ➤ Latency and Excess Skew
- ➤ Link On/Off and Channel Enable/Disable
- **➤** Unframed Mode Channel-Wise Pattern

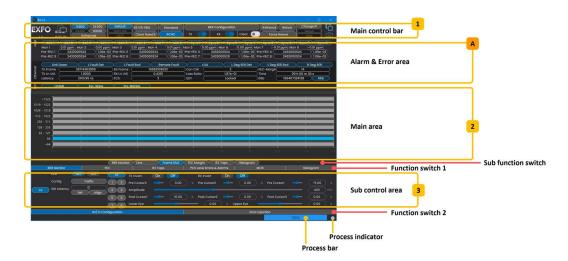
TX, RX pattern for each channel

▶ BER Configuration Settings

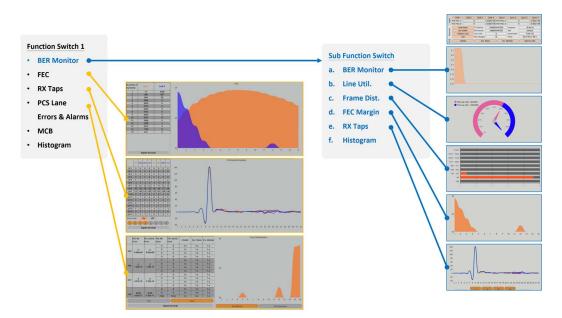
Once the settings are saved, they are stored in a file and can be retrieved for future use.


The **Load Settings** feature allows you to load a previously saved configuration file. The feature restores all the settings listed above, so manual configuration is not needed.

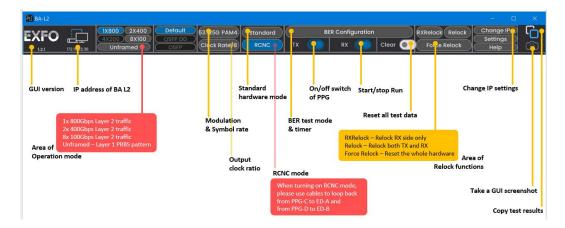
To load the settings:


Select the saved .bal2 file.

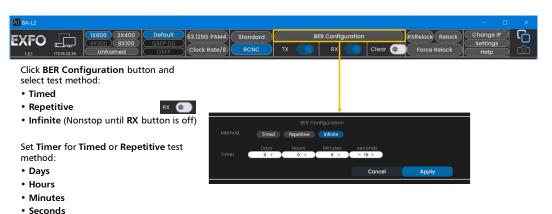
The system will automatically apply all configurations from the file, including mode, data rate, tap values, invert settings, and more.


Help

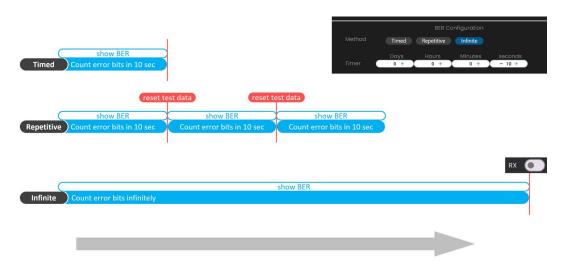
GUI Sections



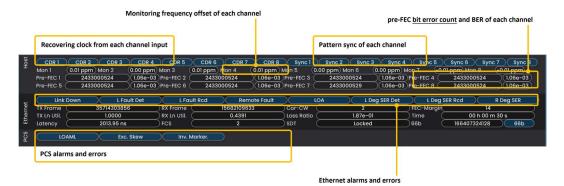
GUI Map

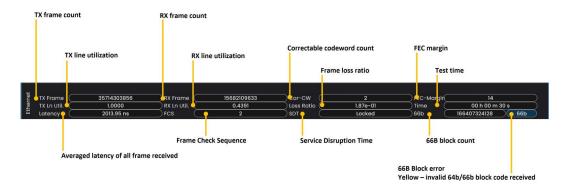


Main Control Bar



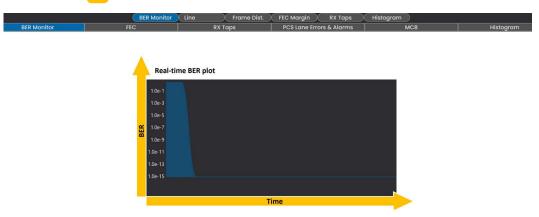
BER Configuration (1/2)


BER Configuration (2/2)


Alarm & Error Area

BER Monitor (1/3)

BER Monitor (2/3)

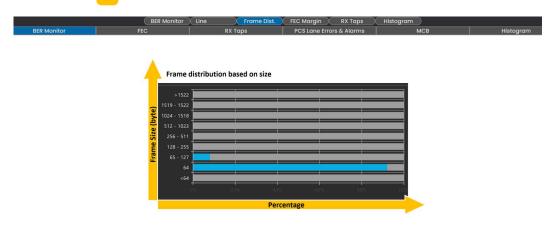

BER Monitor (3/3)

Layer	A/E	Alarm/Error	Note
Physical	Α	CDR	Recover clock from input Blue – successfully recover clock Yellow – fail to recover clock (ex: LOS)
	Α	Sync	Pattern sync Blue – successfully lock pattern Yellow – fail to lock pattern (ex: polarity inverted)
Ethernet	Α	Link Down	There is a local/remote fault condition.
	Α	L Fault Det	Local Fault Detected Loss of bit sync, Loss of Block sync, Link Down, or High BER
	Α	L Fault Rcd	Local Fault Received Received data path contains Local Fault signal
	Α	Remote Fault	Received data path contains Remote Fault status
	Α	LOA	Loss of Alignment Alignment of codeword marker not found
	Α	L Deg SER Det	Local Degraded SER Detected Local FEC degraded SER condition detected
	Α	L Deg SER Rcd	Local Degraded SER Received Local degraded SER signal received
	Α	R Deg SER	Remote Degraded SER Remote degraded SER signal detected
	Е	66B	An invalid 64b/66b block code is received, and declared when synchronization field has a value of 00 or 11.
PCS	А	LOAML	Loss of Alignment Marker Lock In lock mode, four consecutive marker values received do not match the AM that the lane is currently locked to. LOAML is cleared when the PCS lane is declared Lock and two valid AM 16384 blocks (66b) apart are received.
	Α	Exc. Skew	Excessive Skew Skew exceeds defined threshold.
	Α	Inv. Marker	Invalid Marker There are errors in 66-bit block AM.

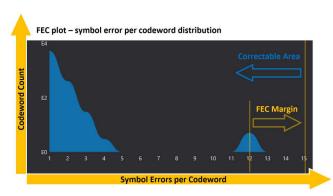
Main Area - BER Monitor

2

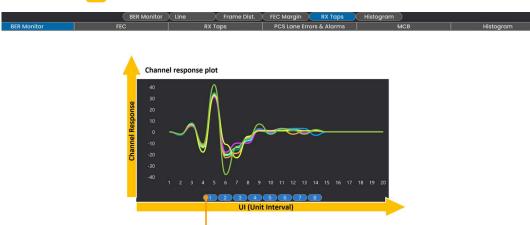
BER Monitor


b Line Utilization

TX line utilization and RX line utilization



Frame Distribution



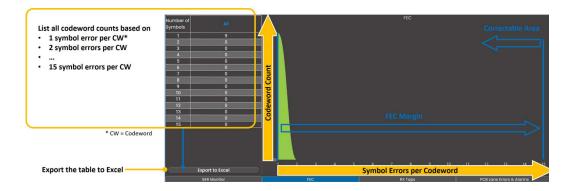
G FEC Margin


e RX Taps

Turn on/off individual channels

Turn on/off individual channels

🚹 Histogram

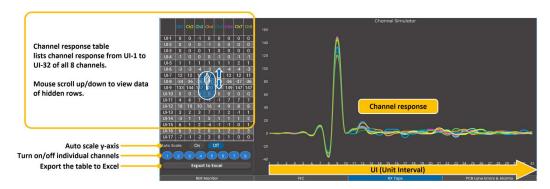


Main Area

2

FEC

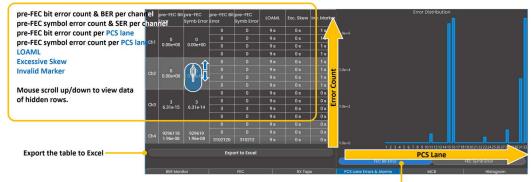
The FEC plot of **Symbol Errors per Codeword** vs. **Codeword Count** helps you know the behavior of error distribution by getting a high or low FEC margin. There are symbol errors that are uncorrectable or not.



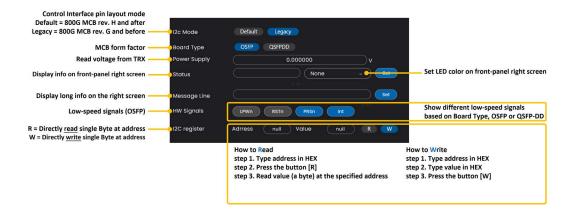
RX Taps

Intersymbol interference (ISI) affects BER. The less ISI, the better BER.

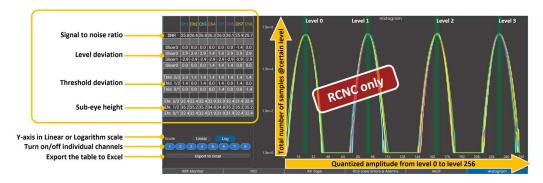
With the **Channel Simulator** function, you can know how serious the ISI of the input signal is. It provides impulse response within 8 pre-cursors, a main cursor, and 23 post-cursors. The $0\,\%$ axis is a reference. For all cursors except the main one, the further distance from $0\,\%$ axis, the worse signal quality.


The **Channel Simulator** lists all cursor values of 8 channels. Based on the table, users can tune taps of the transmitter to compensate ISI.

PCS Lane Errors & Alarms

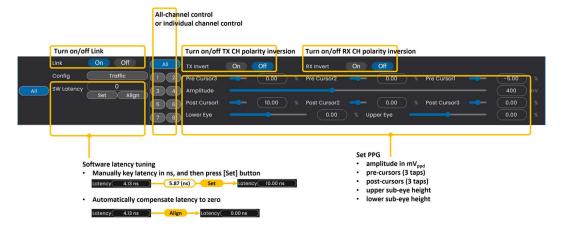

This function displays the channel's bit error count, symbol error count, BER and SER in order to know error information.

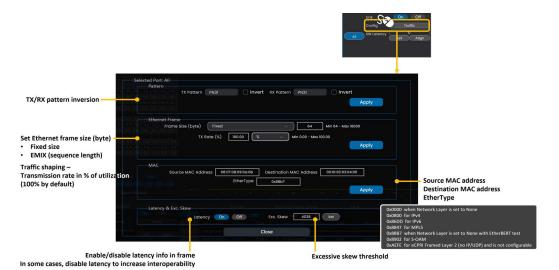
It displays the PCS lane's bit error count, symbol error count, and LOAML, Excessive Skew and Invalid Marker values.


Select FEC Bit Error or FEC Symbol Error to display

MCB

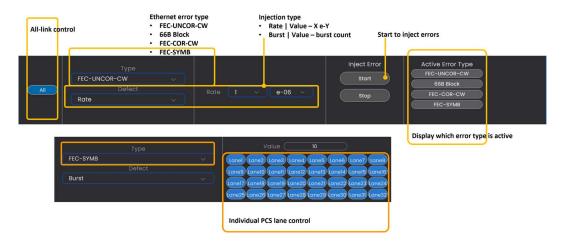
Histogram


This function displays signal level distribution to get an idea of linearity.

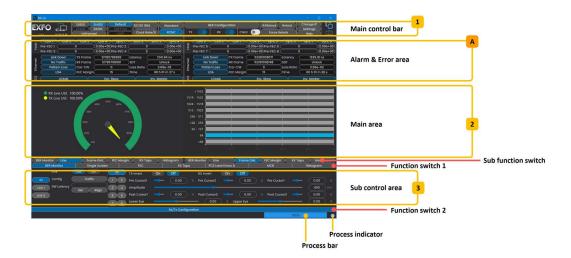

Sub Control Area

3

RX/TX Configuration (1/3)


RX/TX Configuration (2/3)

RX/TX Configuration (3/3)

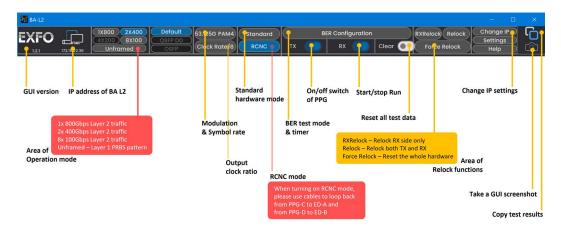


Error Injection

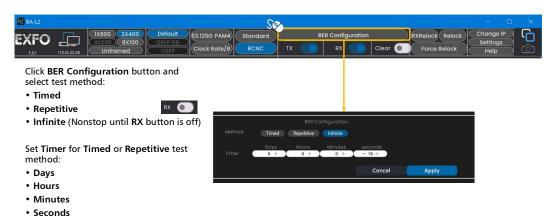


4 2x 400G Mode

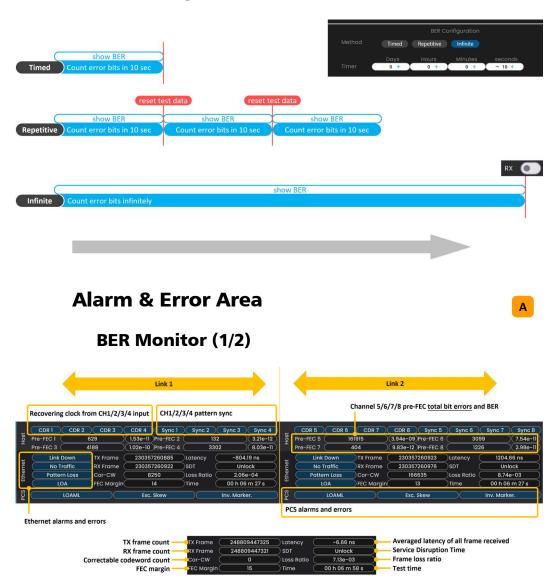
GUI Sections



GUI Map



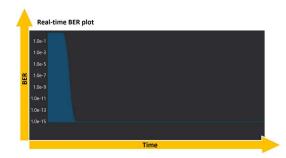
Main Control Bar


1

BER Configuration (1/2)

BER Configuration (2/2)

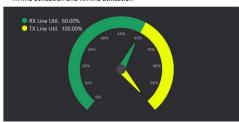
BER Monitor (2/2)


Layer	A/E	Alarm/Error	Note
Physical	Α	CDR	Recover clock from input Blue – successfully recover clock Yellow – fail to recover clock (ex: LOS)
	Α	Sync	Pattern sync Blue – successfully lock pattern Yellow – fail to lock pattern (ex: polarity inverted)
Ethernet	Α	Link Down	There is a local/remote fault condition.
	Α	No Traffic	Test is running but no pattern traffic received in the last second.
	Α	Pattern Loss	>20% bit errors received Reference sequence unambiguously identified as out of phase Frame loss
	Α	LOA	Loss of Alignment Alignment of codeword marker not found
PCS	А	LOAML	Loss of Alignment Marker Lock In lock mode, four consecutive marker values received do not match the AM that the lane is currently locked to. LOAML is cleared when the PCS lane is declared Lock and two valid AM 16384 blocks (66b) apart are received.
	Α	Exc. Skew	Excessive Skew Skew exceeds defined threshold.
	Α	Inv. Marker	Invalid Marker There are errors in 66-bit block AM.

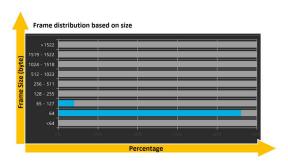
Main Area - BER Monitor

2

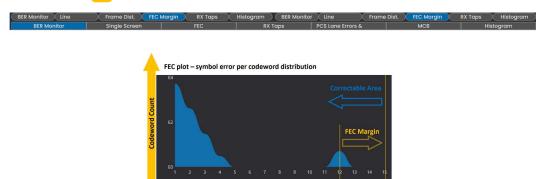
BER Monitor



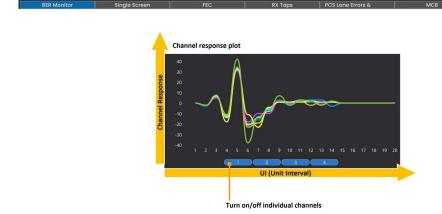
b Line Utilization



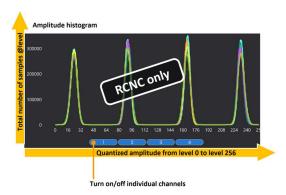
TX line utilization and RX line utilization



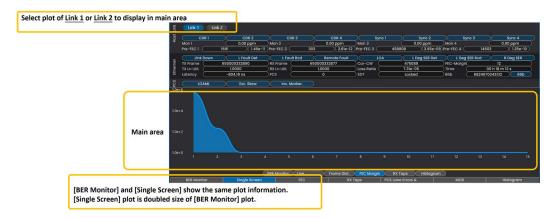
Frame Distribution



d FEC Margin

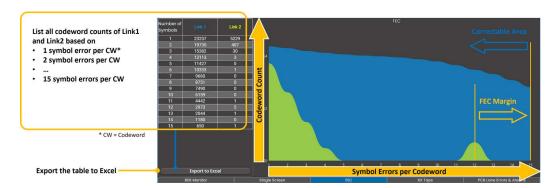

Symbol Errors per Codeword

e RX Taps



Main Area

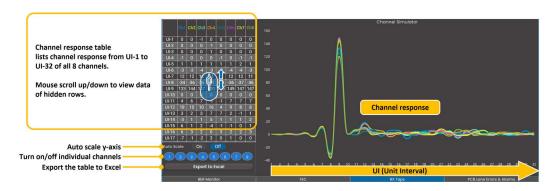
2


Single Screen

BER Monitor and **Single Screen** display the same plot information. **Single Screen** plot is double in size of **BER Monitor** plot.

FEC

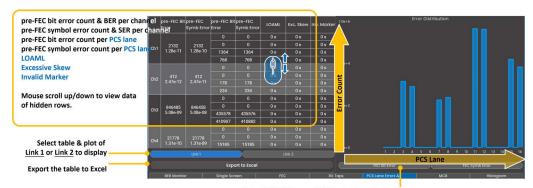
The FEC plot of **Symbol Errors per Codeword** vs. **Codeword Count** helps you know the behavior of error distribution by getting a high or low FEC margin. There are symbol errors that are uncorrectable or not.



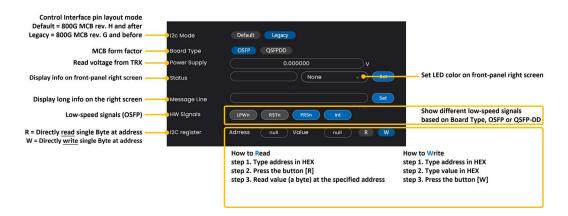
RX Taps

Intersymbol interference (ISI) affects BER. The less ISI, the better BER.

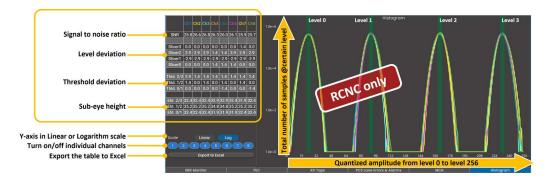
With the **Channel Simulator** function, you can know how serious the ISI of the input signal is. It provides impulse response within 8 pre-cursors, a main cursor, and 23 post-cursors. The $0\,\%$ axis is a reference. For all cursors except the main one, the further distance from $0\,\%$ axis, the worse signal quality.


The **Channel Simulator** lists all cursor values of 8 channels. Based on the table, users can tune taps of the transmitter to compensate ISI.

PCS Lane Errors & Alarms

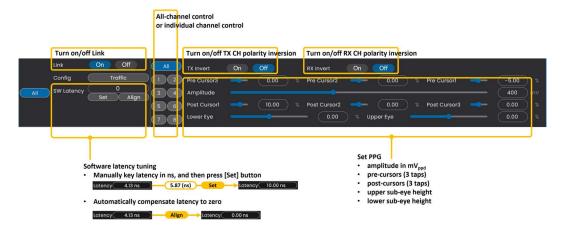

This function displays the channel's bit error count, symbol error count, BER and SER in order to know error information.

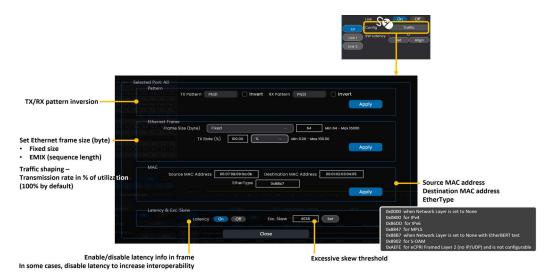
It displays the PCS lane's bit error count, symbol error count, and LOAML, Excessive Skew and Invalid Marker values.

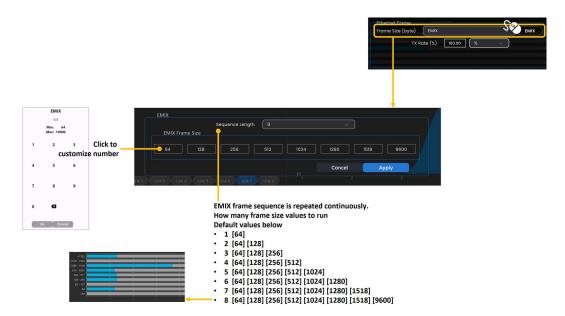

Select FEC Bit Error or FEC Symbol Error to display

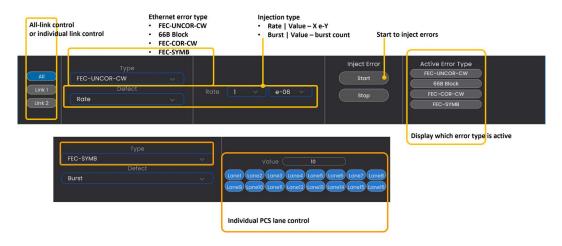
MCB

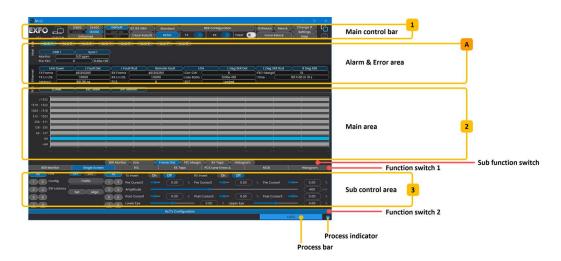
Histogram

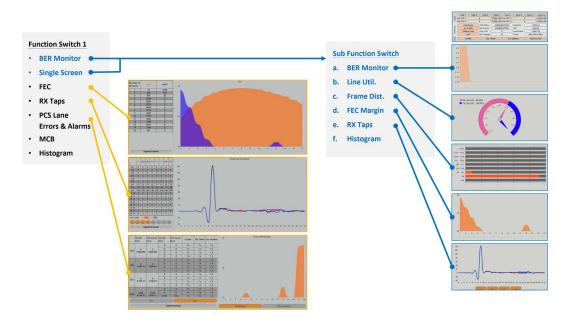

This function displays signal level distribution to get an idea of linearity.


Sub Control Area

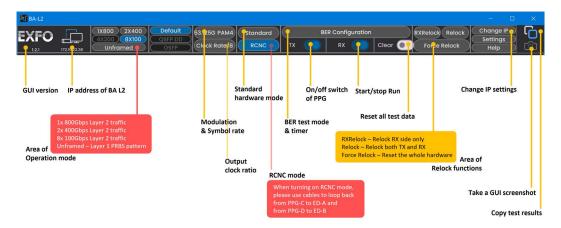

RX/TX Configuration (1/3)


RX/TX Configuration (2/3)

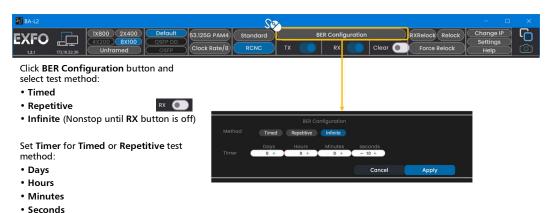

RX/TX Configuration (3/3)


Error Injection

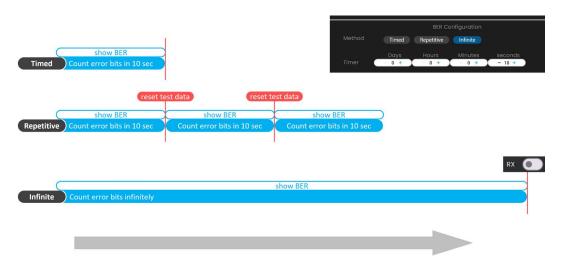
GUI Sections



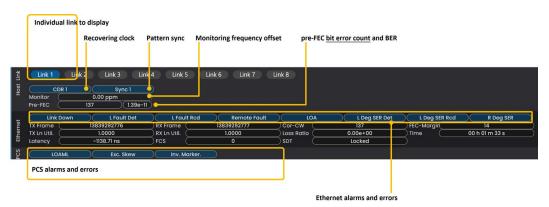
GUI Map

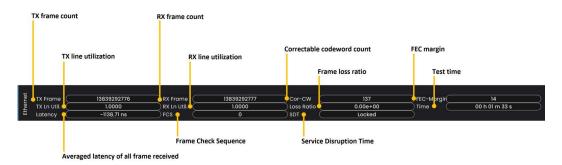


Main Control Bar



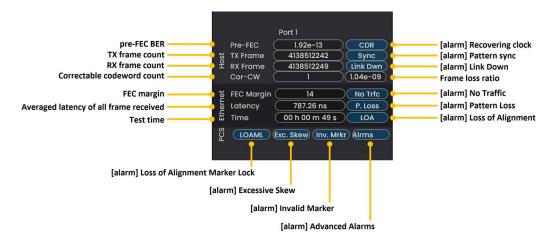
BER Configuration (1/2)


BER Configuration (2/2)


Alarm & Error Area

Single Screen (1/3)

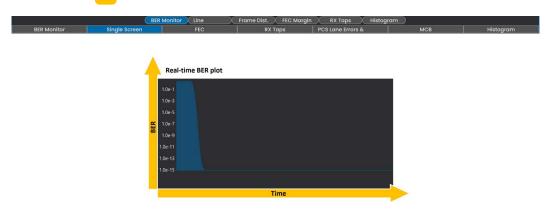
Single Screen (2/3)


Single Screen (3/3)

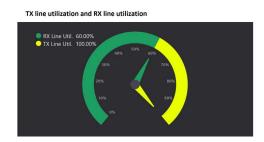
Layer	A/E	Alarm/Error	Note
Physical	Α	CDR	Recover clock from input Blue – successfully recover clock Yellow – fail to recover clock (ex: LOS)
	Α	Sync	Pattern sync Blue – successfully lock pattern Yellow – fail to lock pattern (ex: polarity inverted)
Ethernet	Α	Link Down	There is a local/remote fault condition.
	Α	L Fault Det	Local Fault Detected Loss of bit sync, Loss of Block sync, Link Down, or High BER
	Α	L Fault Rcd	Local Fault Received Received data path contains Local Fault signal
	Α	Remote Fault	Received data path contains Remote Fault status
	Α	LOA	Loss of Alignment Alignment of codeword marker not found
	Α	L Deg SER Det	Local Degraded SER Detected Local FEC degraded SER condition detected
	Α	L Deg SER Rcd	Local Degraded SER Received Local degraded SER signal received
	Α	R Deg SER	Remote Degraded SER Remote degraded SER signal detected
PCS	А	LOAML	Loss of Alignment Marker Lock In lock mode, four consecutive marker values received do not match the AM that the lane is currently locked to. LOAML is cleared when the PCS lane is declared Lock and two valid AM 16384 blocks (66b) apart are received.
	Α	Exc. Skew	Excessive Skew Skew exceeds defined threshold.
	Α	Inv. Marker	Invalid Marker There are errors in 66-bit block AM.

Main Area

2

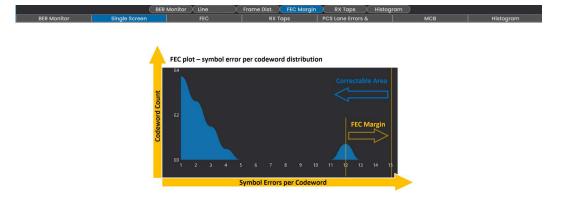

BER Monitor (1/2)

BER Monitor (2/2)

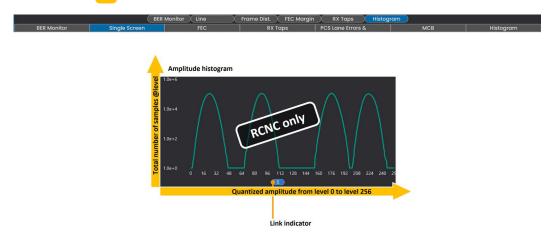

Layer	A/E	Alarm/Error	Note
Physical	Α	CDR	Recover clock from input Blue – successfully recover clock Yellow – fail to recover clock (ex: LOS)
	Α	Sync	Pattern sync Blue – successfully lock pattern Yellow – fail to lock pattern (ex: polarity inverted)
Ethernet	Α	Link Down	There is a local/remote fault condition.
	Α	No Traffic	Test is running but no pattern traffic received in the last second.
	Α	Pattern Loss	>20% bit errors received Reference sequence unambiguously identified as out of phase Frame loss
	Α	LOA	Loss of Alignment Alignment of codeword marker not found
PCS	А	LOAML	Loss of Alignment Marker Lock In lock mode, four consecutive marker values received do not match the AM that the lane is currently locked to. LOAML is cleared when the PCS lane is declared Lock and two valid AM 16384 blocks (66b) apart are received.
	Α	Exc. Skew	Excessive Skew Skew exceeds defined threshold.
	Α	Inv. Marker	Invalid Marker There are errors in 66-bit block AM.
	Α	Alarms Adv.	Advanced Alarms

Single Screen - BER Monitor

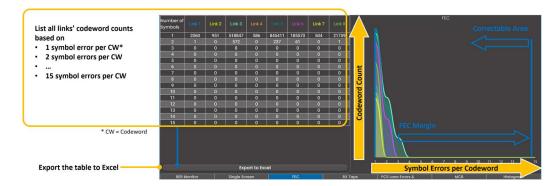
b Single Screen - Line Utilization



Single Screen - Frame Distribution


d Single Screen - FEC Margin

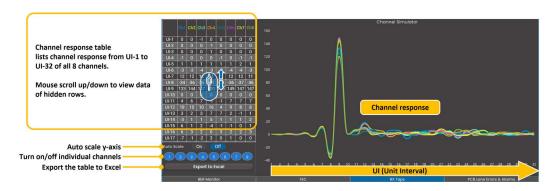
Single Screen - RX Taps



f Single Screen - Histogram (RNC Only)

FEC

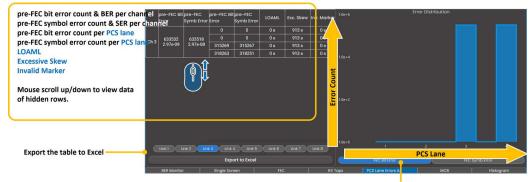
The FEC plot of **Symbol Errors per Codeword** vs. **Codeword Count** helps you know the behavior of error distribution by getting a high or low FEC margin. There are symbol errors that are uncorrectable or not.

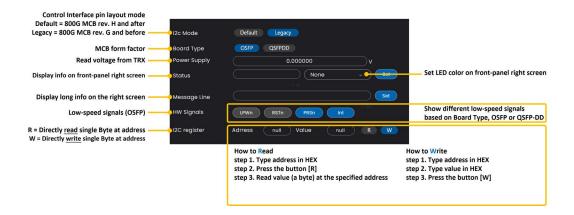


RX Taps

Intersymbol interference (ISI) affects BER. The less ISI, the better BER.

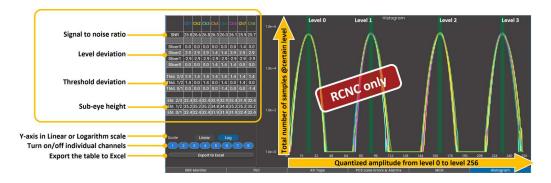
With the **Channel Simulator** function, you can know how serious the ISI of the input signal is. It provides impulse response within 8 pre-cursors, a main cursor, and 23 post-cursors. The $0\,\%$ axis is a reference. For all cursors except the main one, the further distance from $0\,\%$ axis, the worse signal quality.


The **Channel Simulator** lists all cursor values of 8 channels. Based on the table, users can tune taps of the transmitter to compensate ISI.


PCS Lane Errors & Alarms

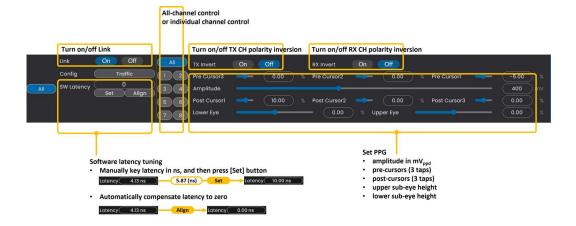
This function displays the channel's bit error count, symbol error count, BER and SER in order to know error information.

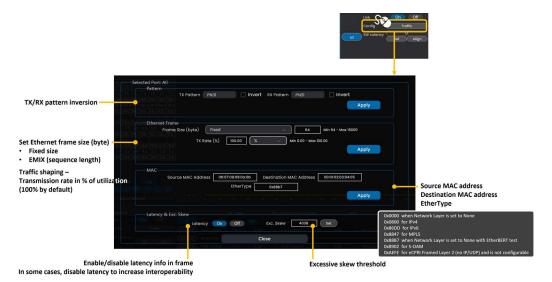
It displays the PCS lane's bit error count, symbol error count, and LOAML, Excessive Skew and Invalid Marker values.

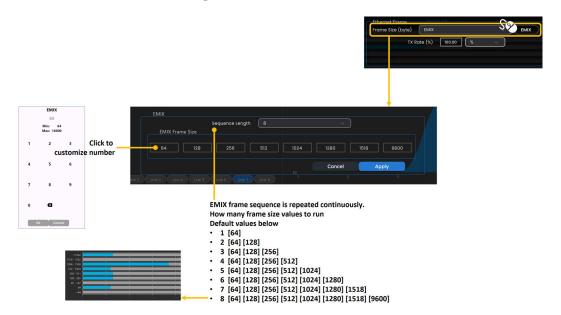


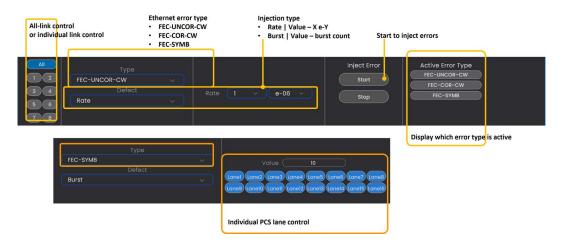
MCB

Histogram

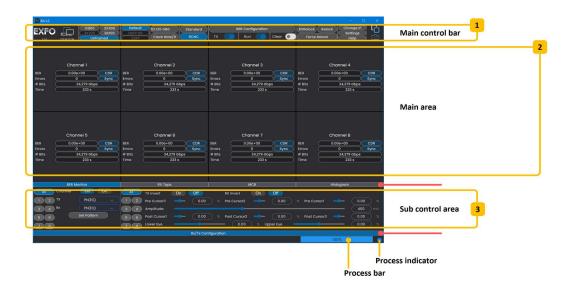

This function displays signal level distribution to get an idea of linearity.


Sub Control Area

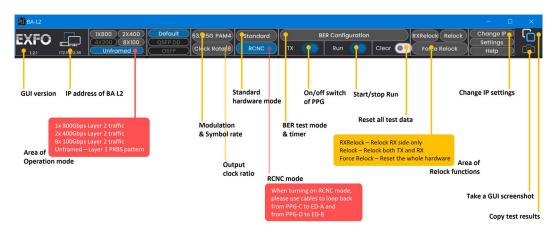

RX/TX Configuration (1/3)


RX/TX Configuration (2/3)

RX/TX Configuration (3/3)

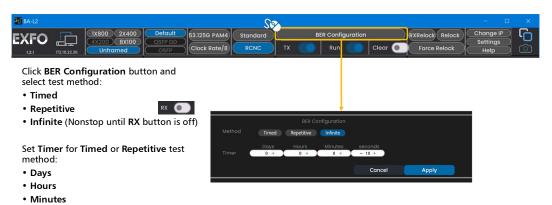


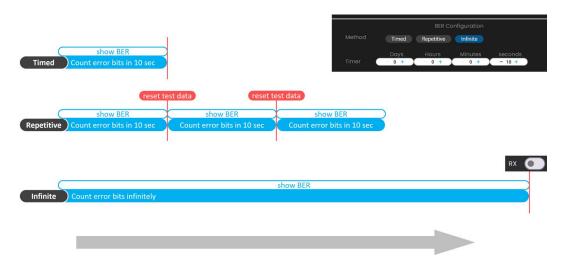
Error Injection


6 Unframed Mode

GUI Sections

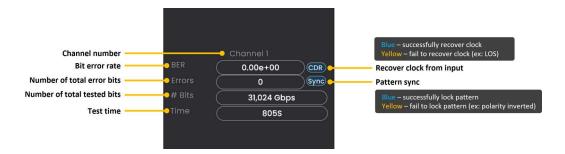
Main Control Bar


1


Main Control Bar

Seconds

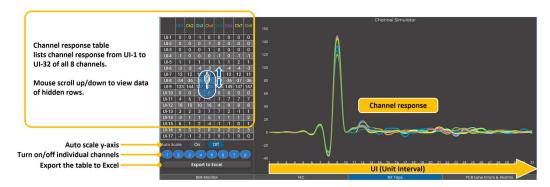
BER Configuration (1/2)


BER Configuration (2/2)

Main Area

2

BER Monitor

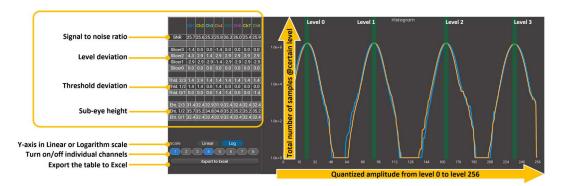


RX Taps

Intersymbol interference (ISI) affects BER. The less ISI, the better BER.

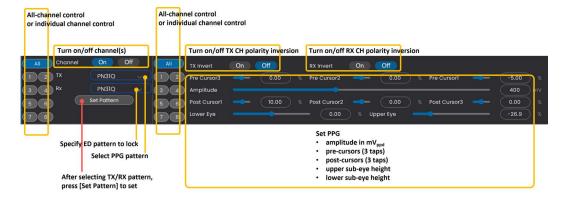
With the **Channel Simulator** function, you can know how serious the ISI of the input signal is. It provides impulse response within 8 pre-cursors, a main cursor, and 23 post-cursors. The $0\,\%$ axis is a reference. For all cursors except the main one, the further distance from $0\,\%$ axis, the worse signal quality.

The **Channel Simulator** lists all cursor values of 8 channels. Based on the table, users can tune taps of the transmitter to compensate ISI.



MCB

Histogram


This function displays signal level distribution to get an idea of linearity.

Sub Control Area

3

RX/TX Configuration

Index

A	
amplitude12	
C channel simulator27, 28, 44, 45, 60, 61, 69, 70 codeword	
E ethernet	
excessive skew 28, 45, 61	
G	
gateway 15	
invalid marker	
L LOAML28, 45, 61	
М	
mode hardware 12, 14 operation 12 unframed 16 model no 2, 3, 4, 5, 6, 7	
P	
power on 11	
R RJ45 port11	

setup button	16
subnet mask	15
symbol errors	27, 44, 60
T	
timer	
repetitive1	5, 21, 37, 53, 68
timed 1	5, 21, 37, 53, 68

S

P/N: 2.0.0.1

 $www. {\sf EXFO.com} ~\cdot~ info@{\sf EXFO.com}$

 CORPORATE HEADQUARTERS
 400 Godin Avenue
 Quebec (Quebec) G1M 2K2 CANADA Tel.: 1 418 683-0211 · Fax: 1 418 683-2170

TOLL-FREE (USA and Canada) 1 800 663-3936

© 2025 EXFO Inc. All rights reserved. Printed in Canada (2025-07)

